The Python Library Reference
Release 3.11.0

Guido van Rossum and the Python development team

October 24, 2022

Python Software Foundation
Email: docs@python.org

CONTENTS

Introduction 3
1.1 Notesonavailability e 3
1.1.1 WebAssembly platforms L 4
Built-in Functions 5
Built-in Constants 29
3.1 Constants added by the sitemodule 30
Built-in Types 31
4.1 Truth Value Testing o o v i it e 31
4.2 Boolean Operations — and, O, NOT + . v v v v v v v v v e e e e e e e e e e e e e e e 31
43 COMPAriSONS « v v v v v v e 32
4.4 Numeric Types — int, float,complex v v vt i vt v ittt e e e 32
4.4.1 Bitwise Operations on Integer Types 34
4.4.2 Additional Methods on Integer Types v v v v i i v it 34
443 Additional Methodson Float 36
444 Hashingof numerictypes e 37
45 Tterator Types o o o e e e 39
45.1 Generator Types e 39
4.6 Sequence Types — list,tuple, range o vvvv vttt 39
4.6.1 Common Sequence Operations v v v v v v v vt e e e e 40
4.6.2 Immutable Sequence Types i i e e 41
4.6.3 Mutable Sequence Types 42
4.6.4 LiStsS e e e 43
4.6.5 Tuples e 44
4.6.6 RaNZES e e e e e e e e e 44
477 TextSequence Type — STIT . . . o v i v v i i e e e e e e e e e e e e e 46
47.1 StringMethods e 47
47.2 printf-style String Formatting oo oL, 54
4.8 Binary Sequence Types — bytes, bytearray, memoryview 56
4.8.1 BytesODJECtS o e e e e e e e e e e e e 57
4.8.2 Bytearray ObJectS v v v e e e e e e e e e e e e e e e e 58
4.8.3 Bytesand Bytearray Operations oo e e e 59
484 printf-style Bytes Formatting 69
4.8.5 Memory VIEWS o i L e e e e 71
4.9 SetTypes — set, frozenset ol 78
410 Mapping Types — dicCt . . v v v v v i e 80
4.10.1 Dictionary VIiew ObJECtS v v v i e e e e e e e e e e e e e e e e e e e 84
4.11 Context Manager Types e 85
4.12 Type Annotation Types — Generic Alias, Union 86
4.12.1 Generic Alias Type ot i e 86
4122 Union TYPE . . . v v i i e e e e e e e e e e e e e e e e e 90
4.13 Other Built-in Types o o e e e e e e e e 91

4.13.1 Modules e e e e 91

4.13.2 Classesand ClassInstances o i i i i v ittt 91
4133 Functions e e e e e 91
4134 Methods L e e e e 92
4.13.5 Code Objects v v i i i e e e e e e e e e e 92
4.13.6 Type Objects i i e e e e 92
41377 TheNullObject o e 93
4.13.8 The Ellipsis Object o e e e e e 93
4.13.9 The NotImplemented Object 93
4.13.10 Boolean Values e e e e 93
4.13.11 Internal Objects e e e e e 93
4.14 Special AribULES e e e e e e e e e e e e e e e e 93
4.15 Integer string conversion length limitationo o 94
4.15.1 Affected APIs e 95
4.15.2 Configuring the limit oL 95
4.15.3 Recommended configurationl 96
Built-in Exceptions 97
5.1 EXCeption CONEXE v o vt vttt s e e e e e e e e e e e e e e e 97
5.2 Inheriting from built-in exceptionsl 98
53 Baseclasses e e e e e 98
5.4 Concrete eXCePLIONS .+ v v v v v v v v e 99
541 OSexCeptions v v v v it e e e e e e e e e e e e e e e 104
5.5 Warningsl e e e 105
5.6 EXCeption groupso e e e e e e e 106
5.7 Exception hierarchy L e 107
Text Processing Services 109
6.1 string— Common String OPerationst iu e e e e e e e 109
6.1.1 String COnStants o i e e e e e e e e e e e e e e e e e e e 109
6.1.2 Custom String Formatting e e e e 110
6.1.3 Format String Syntax e e e e e e e e e 111
6.1.4 Template strings e e e 118
6.1.5 Helperfunctions e 120
6.2 re — Regular expression Operations uu .t e e e e e e e e e e 120
6.2.1 Regular Expression Syntax e e e e e 120
6.2.2 Module Contents e e e e e e e e 126
6.2.3 Regular Expression Objects L e 131
6.24 MatchObjects 132
6.2.5 Regular Expression Examples oL o 135
6.3 difflib — Helpers for computingdeltas, 140
6.3.1 SequenceMatcher Objects i e e e e e 144
6.3.2 SequenceMatcher Examples oL o 147
6.3.3 DifferObjects e e e 147
6.3.4 Differ Example 148
6.3.5 A command-line interface todifflib oo o oo 149
6.4 textwrap — Textwrappingandfilling. 150
6.5 unicodedata—Unicode Database 154
6.6 stringprep — Internet String Preparation L. 155
6.7 readline —GNUreadlineinterface 157
6.7.1 Initfile e e 157
6.7.2 Linebuffer. 158
6.7.3 Historyfile. oL e e e 158
6.7.4 History list o L e e e e e 158
6.7.5 Startuphooks 159
6.7.6 Completion 159
6.7.7 Example e e e e e e e e e e e e 160
6.8 rlcompleter — Completion function for GNU readline 161

6.8.1 Completer Objects e e e e 162

7 Binary Data Services 163
7.1 struct — Interpret bytes as packed binarydata Lo 163
7.1.1 Functions and Exceptions 163

7.1.2 Format Strings v v v o e 164

T3 Classes o v v vt e e e e e e e e 167

7.2 codecs — Codecregistryand base classes L oo 168
7.2.1 CodecBase Classes i v ittt e 171

7.22 Encodingsand Unicode 177

7.2.3 Standard Encodings e e e e e 179

7.2.4 Python Specific Encodings e 182

7.2.5 encodings.idna — Internationalized Domain Names in Applications 183

7.2.6 encodings.mbcs — Windows ANSIcodepage 184

7.277 encodings.utf_8_sig— UTF-8 codec with BOM signature 184

8 Data Types 185
8.1 datetime —Basicdateandtimetypes 185
8.1.1 Awareand Naive Objects o ot vttt e e e 185

8.1.2 Constants e e e e e e e 186

8.1.3 Available Types o i i e e e e e e e 186

8.1.4 timedelta Objects i i i i i e e e e e e e e 187

8.1.5 dateObjects i e e e 191

8.1.6 datetime Objects o i e 195

8.1.7 time ODbJECtS v i i e e e e e e e e e e e e 205

8.1.8 tzinfo Objects i i i 209

8.1.9 timezone Objects e e e e 215
8.1.10 strftime () and strptime () Behavior 216

82 zoneinfo—IANAtIMEZONESUPPOIt o v v v vttt et e e 219
82.1 UsingZoneINnfo i i i ittt e e e e 220

822 DataSOUICES . « v v v v v v e 221

823 The ZoneInfoclass e 222

8.2.4 Functions e e e e e e 224

825 Globals e 224

8.2.6 Exceptions and warningso e e e e e e 224

8.3 calendar — General calendar-related functions L. 225
84 collections— Container datatypes v v v v it et e e e e e e e e 229
84.1 ChainMap ObJeCts v v v v i it e e e e e e e e e e e 230

842 CounterObjects 232

843 dequeobjects e e 235

844 defaultdictobjects. v v v i v i i e e e e e e e e 238

8.4.5 namedtuple () Factory Function for Tuples with Named Fields 240

84.6 OrderedDictobjects o i i i i e e e e e e e 243

847 UserDictobjects e 245

8.4.8 UserListobjects o o i i e e 246

849 UserStringobjects 246

8.5 collections.abc — Abstract Base Classes for Containers 246
8.5.1 Collections Abstract Base Classes 248

8.5.2 Collections Abstract Base Classes — Detailed Descriptions 250

853 Examplesand Recipes 251

8.6 heapg—Heap queue algorithm 252
8.6.1 Basic Examples e e e e e e e 254

8.6.2 Priority Queue Implementation Notes o 254

8.6.3 Theory. o e e e e 255

8.7 Dbisect — Array bisectionalgorithm 0oL oo 256
8.7.1 Performance NOtes i e e e e 257

8.7.2 Searching Sorted Lists e e 258

8.7.3 Examples e e e e e e e e 258

8.8 array — Efficient arrays of numericvalues oo oo oL 259
8.9 weakref —Weakreferences e 262
8.9.1 Weak Reference Objects i i i e 266
89.2 Example L e e 267
8.9.3 Finalizer Objects o o i i e e 267
8.9.4 Comparing finalizers with __del__ () methods. 268
8.10 types — Dynamic type creation and names for built-in types 269
8.10.1 Dynamic Type Creation o v i v v it e et e e e e e e 270
8.10.2 Standard Interpreter Types 270
8.10.3 Additional Utility Classes and Functions 274
8.10.4 Coroutine Utility Functions 275
8.11 copy — Shallow and deep copy operations oo vt e 275
8.12 pprint —Datapretty printer e e e e e e e e e e e e e 276
8.12.1 PrettyPrinter Objects e 278
8.12.2 Example L e 279
8.13 reprlib — Alternate repr () implementation 281
8.13.1 ReprObjects i i e e e e 282
8.13.2 Subclassing Repr Objects o e e e e e e 283
8.14 enum — Support for enumMerationst e e e e e e e e e 283
8.14.1 Module Contents o i i e e e e e e e e e e e e 284
8.14.2 DataTypes e 285
8.14.3 Utilities and Decorators Lo e e e e e 294
8144 NOES . . . v it e e e 295
8.15 graphlib — Functionality to operate with graph-like structures 296
. A5.1 EXCeptions i e e e e e e e e e e e e 298
Numeric and Mathematical Modules 299
9.1 numbers — Numeric abstractbase classes 299
9.1.1 The numeric tOWET v v vt it et e e e e e e e e e e e 299
9.1.2 Notes for type implementorso e e e e 300
9.2 math— Mathematical functions e 302
9.2.1 Number-theoretic and representation functions 302
9.2.2 Power and logarithmic functionso 306
9.2.3 Trigonometric functions L oL e 307
9.2.4 Angularconversiono e 308
9.2.5 Hyperbolic functions 308
9.2.6 Special functions e e 308
927 ConStants oo e e e e e e e e e e e e e e e 309
9.3 cmath — Mathematical functions for complex numbers 310
9.3.1 Conversions to and from polar coordinates 310
9.3.2 Power and logarithmic functions oo oo L 311
9.3.3 Trigonometric functions Lo e e 311
9.3.4 Hyperbolic functions e e e e 311
9.3.5 Classification functions e 312
9.3.6 Constants i e e e e e e e e 312
9.4 decimal — Decimal fixed point and floating point arithmetic 313
9.4.1 Quick-start Tutorial e e 314
9.42 Decimal ObJECES v v e e e e e e e e e e e e e e 317
943 ConteXtObJECtS e e e e e e e e e e e e e e 324
9.4.4 Constants i e e e e e e e e e e 330
945 Roundingmodes. e 331
9.4.6 Signals e 331
9.4.7 FloatingPoint Notes e 333
9.4.8 Workingwiththreads e 334
949 RECIPES '« . v v v i e e e e e e e e e e 335
9.4.10 Decimal FAQ e e e e 337
9.5 fractions—Rationalnumbers L oL 340
9.6 random— Generate pseudo-random numbersol e e 342

9.6.1 Bookkeeping functions e 343

9.6.2 Functionsforbytes e e e 344

9.6.3 Functions for integers i e e e e e e e e 344

9.6.4 Functions forsequences e 344

9.6.5 Real-valued distributions 345

9.6.6 Alternative Generator i it e e e e e e e e e e 347

9.6.7 Noteson Reproducibility e 347

9.6.8 Examples e e e e e e e 347

9.6.9 RECIPES . . . v v i e e e e e e 349

9.7 statistics — Mathematical statistics functions, 350
9.7.1 Averages and measures of central location 351

9.72 Measuresof spread 351

9.7.3 Statistics for relations between two inputs oL oo e e 351

9.7.4 Functiondetails e 351

975 EXCeptions e e 358

9.7.6 NormalDist ObJectS ¢ i i v it e e e 358

10 Functional Programming Modules 363
10.1 itertools — Functions creating iterators for efficient looping 363
10.1.1 Ttertool functions L e e e 365
10.1.2 Ttertools Recipes i e 373

10.2 functools — Higher-order functions and operations on callable objects 379
10.2.1 partial Objects o o i i i e e e e e e e 388

10.3 operator — Standard operators as functions 0oL Lo 388
10.3.1 Mapping Operators to Functions 392
10.3.2 In-place Operators v vt i v it e e e e e e e e e 393

11 File and Directory Access 397
11.1 pathlib — Object-oriented filesystem paths 397
I1.1.1 BasiCuse oo i e e e e e 398
I1.1.2 Purepaths o o e e e e e e e e e e e 399

11.1.3 Concretepaths e e e e e e e 406
11.1.4 Correspondence to toolsinthe os module 414

11.2 os.path — Common pathname manipulations 415
11.3 fileinput — Iterate over lines from multiple input streams 420
11.4 stat — Interpreting stat () results o i i e e e 422
11.5 filecmp — File and Directory Comparisons v v v v v v v v v e i e e 428
11.5.1 Thedircmpclass o o i i i i e e e e e e 428

11.6 tempfile — Generate temporary files and directories 430
11.6.1 Examples o oo e e 433

11.6.2 Deprecated functions and variables L 434

11.7 glob — Unix style pathname pattern eXpansion« v v v v v v v v v v v v oo e 434
11.8 fnmatch — Unix filename pattern matching 436
119 linecache —Random accesstotextlines 437
11.10 shutil — High-level file operations 438
11.10.1 Directory and files operations L e 438
11.10.2 Archiving Operations v v v v v v et e e e e e e e e e e e e 444
11.10.3 Querying the size of the output terminal 447

12 Data Persistence 449
12.1 pickle — Python object serialization e 449
12.1.1 Relationship to other Pythonmodules 449
12.1.2 Datastream format oL e e e e e 450
12.1.3 Module Interface 451
12.1.4 What can be pickled and unpickled? 0. 454
12.1.5 Pickling Class Instances i i i i it e e e e 455
12.1.6 Custom Reduction for Types, Functions, and Other Objects 460
12.1.7 Out-of-band Buffers 461
12.1.8 Restricting Globals 463

12.1.9 Performance e e e e e 464

12.1.10 Examples ot e e e e e e e e e e e e e e e e e 464

12.2 copyreg— Register pickle support functions oL 465
1221 Example o oo e e e e e e 465

12.3 shelve — Python object persistence ot 465
12.3.1 ReStrictions o o v vt e e e e e e 466

1232 Example e e e e e e e e e e e e 467

12.4 marshal — Internal Python object serialization 468
12.5 dbm — Interfaces to Unix “databases” it e 469
12.5.1 dbm.gnu— GNU’s reinterpretationof dbm 471
12.5.2 dbm.ndbm — Interface basedonndbmo oL 472

12.5.3 dbm.dumb — Portable DBM implementation 473

12.6 sglite3 — DB-API 2.0 interface for SQLite databases 474
12.6.1 Tutorial oL e 474

12.6.2 Reference L e e e e e 476

12.6.3 How-toguides o e e e 494

12.6.4 Explanation i e e e e e e e e e e e e e e e e e e 499

13 Data Compression and Archiving 501
13.1 zlib — Compression compatible withgzip 501
13.2 gzip—Supportforgzipfiles e 504
13.2.1 Examplesofusage e 507
13.2.2 Command Line Interface e 507

13.3 bz2 — Support forbzip2 compressionol o o 508
13.3.1 (De)compressionof files. 508
13.3.2 Incremental (de)compression i i et e e e e e e e e 509
13.3.3 One-shot (de)compression v v v v v i i e e e e e e e e e e e e 510

1334 Examplesof usage i e e e e e e 510

13.4 1lzma — Compression using the LZMA algorithm 512
13.4.1 Reading and writing compressed files o000 512
13.4.2 Compressing and decompressing data inmemory 513

1343 Miscellaneous oL e e e e e 515

13.4.4 Specifying custom filterchains L o L 515

1345 Examples o e e e e e e e 516

13.5 zipfile— WorkwithZIParchives 517
13.5.1 ZipFile Objects i e e e e 518

13.52 PathObjects o e e e e e e e e e e e e e 522

13.5.3 PyZipFile Objects o i e e e e e e e e e 524
13.5.4 ZipInfo Objects e e e 525

13.5.5 Command-Line Interface 526

13.5.6 Decompression pitfalls 527

13.6 tarfile — Readand write tar archivefiles 528
13.6.1 TarFile Objects o v i i e e e e e e e e e e e 530
13.6.2 TarInfo Objects o . e e e e e e e e 533
13.6.3 Command-Line Interface 534

13.6.4 Examples L e 535

13.6.5 Supported tar formats L. 536
13.6.6 Unicode iSSUES ¢ v v v v vt e e e e e e e e e e e e e e e e e e 537

14 File Formats 539
14.1 csv—CSV File Readingand Writing 539
14.1.1 Module Contents ot it e e e e e e e e e e e e 539
14.1.2 Dialects and Formatting Parameters e 543

14.1.3 Reader Objects e 544
14.1.4 Writer Objects e 544
14.1.5 Examples o o e 545

14.2 configparser — Configurationfileparser 546
1421 Quick Start e e e e 546

vi

14.3

14.4

14.5

15.1

15.2
15.3

16.1

16.2

16.3

16.4

14.2.2 Supported Datatypes e e e e e e e e e e
14.2.3 Fallback Values
14.2.4 Supported INI File Structure e
14.2.5 Interpolationof values
14.2.6 Mapping Protocol AcCess e e
14.2.7 Customizing Parser Behaviour oo o
14.2.8 Legacy APTExamples i i i e e e e e e
14.2.9 ConfigParser Objects v v v i i i e e e e e e e e e
14.2.10 RawConfigParser Objects e
14211 EXCEPLionS . . .« v v v v v e it e e e e e e e e e e e e e
tomllib—Parse TOMLfiles et
14.3.1 Examples o e e e e e e e e e e e
1432 Conversion Table
netrc—netrc file processing L
14.4.1 metrc ObJects« o v i i e e e e e e e e
plistlib — Generate and parse Apple .plistfiles
14.5.1 Examples o e e e e e e e e e e
15 Cryptographic Services
hashlib — Secure hashes and message digests
15.1.1 Hashalgorithms e e e e e e e
15.1.2 SHAKE variable length digests e
15.1.3 Filehashing e
15.1.4 Keyderivation o L ot e e e e e e e e e e e e
15.1.5 BLAKE2 e
hmac — Keyed-Hashing for Message Authentication
secrets — Generate secure random numbers for managing secrets
15.3.1 Randomnumbers
15.3.2 Generatingtokens L
15.3.3 Other functions o L e e e e e
15.3.4 Recipesand best practiceso i e e e e
16 Generic Operating System Services
os — Miscellaneous operating system interfaceso L.
16.1.1 File Names, Command Line Arguments, and Environment Variables
16.1.2 Python UTF-8 Mode i i et e e e e e e e
16.1.3 Process Parameters
16.1.4 File Object Creationt i ittt e e e
16.1.5 File Descriptor Operations v v i v it v it e e e e e
16.1.6 Files and Directories L e e
16.1.7 Process Management v v it e e e e e e e e e e e e
16.1.8 Interfacetothescheduler
16.1.9 Miscellaneous System Information
16.1.10 Random numbers L e e e e e e
io — Core tools for working with streams oL
16.2.1 OVerview o i e e e
1622 TextEncoding o 0 0 i e e e e e e e e e e
16.2.3 High-level Module Interface
16.2.4 Classhierarchy e
16.2.5 Performance
time — Time access and CONVEISIONS« v v v v v v vttt e et e e e e e e
16.3.1 Functions
1632 ClockID Constantsottt
16.3.3 Timezone Constants o vt vttt e e e e e
argparse — Parser for command-line options, arguments and sub-commands
16.4.1 Core Functionality e
16.4.2 Quick Links for add_argument()
1643 Example e e e e e e e e e

569
569
569
571
571
572
573
579
581
581
582
582
583

585
585
586
586
587
593
593
604
625
637
638
640
641
641
642
643
644
653
654
655
662
663
664
664
665
665

vii

16.4.4 ArgumentParser objectso e e e e e 667

16.4.5 The add_argument() method e 675
16.4.6 The parse_args() method 685
16.477 Otherutilities e 688
16.4.8 Upgradingoptparse codet e e e e e e e 695
16.5 getopt — C-style parser for command lineoptions 696
16.6 logging— Logging facility for Python 698
16.6.1 Logger Objects o v i v vt e e e e e e e e e e e 699
16.6.2 LoggingLevels e e e 703
16.6.3 Handler Objects e 703
16.6.4 Formatter Objects o it e e e e 704
16.6.5 Filter Objects o v i i e e e e e e e e e e e e e 706
16.6.6 LogRecord Objects i o i i i e e e e e 707
16.6.7 LogRecord attributes L e 708
16.6.8 LoggerAdapter Objects e 710
16.6.9 Thread Safety 710
16.6.10 Module-Level Functions 710
16.6.11 Module-Level Attributes 714
16.6.12 Integration with the warningsmodule L 715
16.7 logging.config— Logging configuration 715
16.7.1 Configuration functions 715
16.7.2 Security considerations Lo e e e e 717
16.7.3 Configuration dictionary schema e 718
16.7.4 Configuration file format L e 723
16.8 logging.handlers—Logginghandlers 726
16.8.1 StreamHandler e 726
16.8.2 FileHandler e 727
16.8.3 NullHandler 727
16.8.4 WatchedFileHandler. 727
16.8.5 BaseRotatingHandler 728
16.8.6 RotatingFileHandler L 729
16.8.7 TimedRotatingFileHandler 730
16.8.8 SocketHandler e 731
16.8.9 DatagramHandler e e e e e 732
16.8.10 SysLogHandler e e e 733
16.8.11 NTEventLogHandler 734
16.8.12 SMTPHandler e e 735
16.8.13 MemoryHandler L 736
16.8.14 HTTPHandler 736
16.8.15 QueueHandler e e 737
16.8.16 Queuelistener e e e e e e e e e e e e e e e e e 738
16.9 getpass — Portable passwordinputo Lol 739
16.10 curses — Terminal handling for character-cell displays 740
16.10.1 Functions 740
16.10.2 Window Objects v v v et e e e e e e e e e e e e e e e 747
16103 Constants e e 753
16.11 curses.textpad — Text input widget for curses programs 758
16.11.1 Textbox objects i i i e e e 758
16.12 curses.ascii — Utilities for ASCII characters 759
16.13 curses.panel — A panel stack extensionforcurses 761
16.13.1 Functions L 761
16.13.2 Panel Objects e e 762
16.14 plat form — Access to underlying platform’s identifyingdata 762
16.14.1 Cross Platform e 763
16.14.2 JavaPlatform 764
16.14.3 Windows Platform 765
16.14.4 macOSPlatform e 765
16.14.5 Unix Platforms L e 765

viii

16.14.6 Linux Platforms e e e e e 765

16.15 errno — Standard errno system symbols L. L 766
16.16 ctypes — A foreign function library for Python oL 772
16.16.1 ctypestutorial 772
16.16.2 ctypesreference e e e e e e e e e e 789

17 Concurrent Execution 805
17.1 threading— Thread-based parallelism 805
17.1.1 Thread-Local Data e 808

17.1.2 Thread Objects i i i e e e e 808

17.1.3 Lock Objects o o v i e e e e e e e e e e e e e 810
17.1.4 RLock Objects v i it e e e e e e e 811

17.1.5 Condition Objects e e 812

17.1.6 Semaphore Objects e e e e e e e e 814

17.1.7 Event ObJects o v v vt it e e e e e 816
17.1.8 Timer ObJects o v v it e 816
17.1.9 Barrier Objects o v i e e e e e e e e e e e 817
17.1.10 Using locks, conditions, and semaphores in the with statement 818

17.2 multiprocessing — Process-based parallelism 818
17.2.1 Introduction e 819

17.22 Reference o o e e 825

17.2.3 Programming guidelines e e e e 852

1724 Examples o o e e e e e e e e e 856

17.3 multiprocessing.shared_memory — Shared memory for direct access across processes . 861
17.4 The concurrent package i e 866
17.5 concurrent.futures — Launching parallel tasks 866
17.5.1 Executor Objects o v v i i e e e e e e e e e e e e e 866

17.5.2 ThreadPoolExecutor e 867
17.5.3 ProcessPoolEXecutor e e e e 869

1754 Future Objects o e 870

1755 Module Functions e 872

17.5.6 EXCeption Classes v v v v v i i e e e e e e e e e e e e e e e e 872

17.6 subprocess — Subprocess Mmanagement vt e e e e e e e e e e e 873
17.6.1 Usingthe subprocessModule 873
17.6.2 Security Considerations L 881

17.6.3 Popen Objects o o v i e e e e 882

17.6.4 Windows Popen Helpers e 884

17.6.5 Older high-level API e 886
17.6.6 Replacing Older Functions with the subprocess Module 887

17.6.7 Legacy Shell Invocation Functions 890

17.6.8 NOtES . . . o o v 891

177 sched—Eventscheduler e 892
17.7.1 Scheduler Objects v i e e e e e e e e e e e e 893

17.8 queue — A synchronized queue class L. 894
17.8.1 Queue Objects o v i e e e e e e e 895

17.8.2 SimpleQueue Objects e 896

179 contextvars —Context Variables L e 897
17.9.1 Context Variables e e 897

17.9.2 Manual Context Management v v v v v it vt e e e e 898

17.93 asyncio SUPpPOIt e e e e e e e e e e 899

17.10 _thread — Low-level threading API 900
18 Networking and Interprocess Communication 903
18.1 asyncio—AsynchronousI/O L 903
18.1.1 Runners e e e e e 904

18.1.2 Coroutines and Tasks e 906

18.1.3 Streams e e e 922

18.1.4 Synchronization Primitives 929

18.1.5 SubproCesses v v i i e e e e e e e e e e e e e 935

18.1.6 QUEUES o o i e e e e e e e e e e e e e e 939
I8.1.7 EXCeptions i i i e e e e e e e e 942
18.1.8 EventLoop e 942
18.1.9 Futures o e e e e e 964
18.1.10 Transports and Protocols L 968
I8.1.11 Policies i i i e e e e e 981
18.1.12 Platform Support e e e e e e e e 985
18.1.13 Extending e e e e e e e 986
18.1.14 High-level APIIndex it 987
18.1.15 Low-level APl Index e 990
18.1.16 Developing with asyncio v v v v i i e e e e e e e e e 995
18.2 socket — Low-level networking interface 999
18.2.1 Socket families e 999
18.2.2 Module contents oL e e e e e e e e 1002
1823 Socket Objects o o e e e 1013
18.2.4 Notesonsocket imeouts o v v vttt e e e e 1020
1825 Example e e e e e e e e e 1021
18.3 ss1 — TLS/SSL wrapper for socketobjects 1024
18.3.1 Functions, Constants, and Exceptions 1025
1832 SSLSockets o o e 1037
1833 SSLCONtexXtsS v v v it e e e e e e e e e e 1041
18.3.4 Certificates o i e e e e e e e 1049
18.3.5 Examples e e e e e 1051
18.3.6 Notes on non-blockingsockets oo 1053
1837 Memory BIO Support e 1054
18.3.8 SSLSESSION . . . v o v i vt e e e e e 1056
18.3.9 Security considerations i e e e e e e e e e e e 1056
18.3.10 TLS 1.3 & & . o o o e e e 1058
18.4 select — Waiting for /O completion L o 1058
18.4.1 /dev/poll PollingObjects e 1060
18.4.2 Edge and Level Trigger Polling (epoll) Objects 1061
18.4.3 Polling Objects e 1063
18.4.4 Kqueue ObJECtS v v i v e e e e e e e e e e e e e e e e e e 1064
18.4.5 Kevent Objects o v i i e e e e e e e 1064
18.5 selectors — High-level I/O multiplexing 1066
18.5.1 Introduction L i e e e e e e e e 1066
1852 Classes . . . v v v v i i i e e e e e e 1066
18.53 Examples e e e e e e e e e e e 1068
18.6 signal — Set handlers for asynchronous events 1069
18.6.1 Generalrules 1069
18.6.2 Module contents oL e e e e e e e e e e 1070
18.6.3 Examples oL e 1076
18.6.4 NoteonSIGPIPE e 1077
18.6.5 Note on Signal Handlers and Exceptions 1077
18.7 mmap — Memory-mapped filesupport oL 1078
18.7.1 MADV_*Constants o v v v o e e e e e e e e e e e e e e 1082
18.7.2 MAP_*Constants v v e e e e e e e e e e 1082
19 Internet Data Handling 1085
19.1 email — Anemail and MIME handling package, 1085
19.1.1 email.message: Representing an email message 1086
19.1.2 email.parser: Parsingemail messages it e e e 1094
19.1.3 email.generator: Generating MIME documents 1097
19.1.4 email.policy: Policy Objects v it 1100
19.1.5 email.errors: Exception and Defectclasses 1107
19.1.6 email.headerregistry: Custom Header Objects 1108
19.1.7 email.contentmanager: Managing MIME Content 1113

20

19.1.8 email: Examples e 1115
19.19 email.message.Message: Representing an email message using the compat 32 API1122

19.1.10 email.mime: Creating email and MIME objects from scratch 1130
19.1.11 email.header: Internationalized headers 1132
19.1.12 email.charset: Representing charactersets 1134
19.1.13 email.encoders: Encoders. e 1137
19.1.14 email.utils: Miscellaneous utilities 1137
19.1.15 email.iterators:Iterators L o e 1140
19.2 json —JSONencoder and decoder 0 i i i it 1141
1921 BasicUsage e 1143
19.2.2 Encodersand Decoders 1144
19.2.3 EXCEPLions v v i i e e e e e e e e e e e 1147
19.2.4 Standard Compliance and Interoperability 1147
19.2.5 Command Line Interface o 1149
19.3 mailbox — Manipulate mailboxes in various formatso 1150
193.1 Mailboxobjects i e e 1150
1932 Message objects e e e 1158
1933 EXCEPLONS . . v v v v v o e 1166
1934 Examples o e e e e e e e e 1166
194 mimetypes — Map filenamesto MIME types 1167
19.4.1 MimeTypes Objects o o it e e e e e 1169
19.5 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1170
19.5.1 Security Considerations v v v i e e e e e e e e e e e e e 1173
19.6 binascii — Convert between binaryand ASCIT 1173
19.7 quopri — Encode and decode MIME quoted-printabledata 1175
Structured Markup Processing Tools 1177
20.1 html — HyperText Markup Language support 1177
20.2 html.parser — Simple HTML and XHTML parser 1177
20.2.1 Example HTML Parser Application 1178
20.2.2 HTMLParser Methods 0 i i e 1179
20.2.3 Examples . . . oL . e e e e e e e e e e e e e e e e 1180
20.3 html.entities — Definitions of HTML general entities 1182
20.4 XML Processing Modules e 1182
20.4.1 XML vulnerabilities e e e 1183
20.4.2 The defusedxml Package 1184
20.5 xml.etree.ElementTree — The ElementTree XML API 1184
20.5.1 Tutorial e e e e e 1184
20.5.2 XPathsupport o o v i e e e e e e e e e e e 1189
20.5.3 Reference oL e e e e 1191
20.5.4 Xlnclude support 1194
20.5.5 Reference e e e 1195
20.6 xml.dom— The Document Object Model APT 1202
20.6.1 Module Contents e e e e e 1203
20.6.2 Objectsinthe DOM e 1204
20.6.3 Conformance it e e e e e 1212
20.7 xml.dom.minidom— Minimal DOM implementation 1212
20.7.1 DOMODJECtS v oot e e e e e e e e e e e e 1214
20.7.2 DOMExample e e e e e e e e 1215
20.7.3 minidom and the DOM standard 1216
20.8 xml.dom.pulldom— Support for building partial DOM trees 1217
20.8.1 DOMEventStream Objects o vttt e e e e 1218
20.9 xml.sax — Support for SAX2 parsers u . e e e 1219
20.9.1 SAXException ObJects v v v v v i e e e e e e e e e e e e 1220
20.10 xml.sax.handler — Base classes for SAX handlers 1220
20.10.1 ContentHandler Objects e 1222
20.10.2 DTDHandler Objects o i it e e e e e e 1224
20.10.3 EntityResolver Objects o i e e e e e 1225

xi

20.10.4 ErrorHandler Objects o e 1225

20.10.5 LexicalHandler Objects v i i v it e e e e e e e e 1225
20.11 xml.sax.saxutils — SAXUtilities L 1226
20.12 xml.sax.xmlreader — Interface for XML parsers 1227
20.12.1 XMLReader Objects o o v ittt e e e e e e e 1228
20.12.2 IncrementalParser Objects o 1229
20.12.3 Locator ObJects v v v v o e 1229
20.12.4 InputSource ObJects v v v i e e e e e e e e e e e e e 1229
20.12.5 The AttributesInterface L o o 1230
20.12.6 The AttributesNSlInterface 1230
20.13 xml .parsers.expat — Fast XML parsing using Expat 1231
20.13.1 XMLParser Objects v v v v v it e e e e e e e 1232
20.13.2 ExpatError Exceptions i e e e e e e 1236
20.13.3 Example L e e e e e e e e e e e 1236
20.13.4 Content Model Descriptions Lo e 1237
20.13.5 ExXpat error CONStants e e e e e e e e e e e e e e e e 1237
21 Internet Protocols and Support 1241
21.1 webbrowser — Convenient web-browser controller 1241
21.1.1 Browser Controller Objects it e 1243
21.2 wsgiref — WSGI Utilities and Reference Implementation 1243
21.2.1 wsgiref.util — WSGI environment utilities 1244
21.2.2 wsgiref.headers— WSGIresponse headertools 1245
2123 wsgiref.simple_server —asimple WSGIHTTPserver 1246
21.24 wsgiref.validate — WSGI conformance checker 1248
21.2.5 wsgiref.handlers —server/gateway baseclasses 1249
21.2.6 wsgiref.types — WSGI types for static type checking 1252
21.2.7 Examples e e e e e e e e e e 1252
213 urllib—URLhandlingmodules 1254
214 urllib.request — Extensible library foropening URLs 1254
21.4.1 RequestObjects oL e e 1259
21.4.2 OpenerDirector Objects v v v i i e e e e e e e e e e e 1260
21.4.3 BaseHandler Objects i i i i e e e e e e 1261
21.4.4 HTTPRedirectHandler Objects 1263
21.4.5 HTTPCookieProcessor Objects it 1263
21.4.6 ProxyHandler Objects e 1264
21.477 HTTPPasswordMgr Objects o ot ittt e et e 1264
21.4.8 HTTPPasswordMgrWithPriorAuth Objects 1264
21.4.9 AbstractBasicAuthHandler Objects o e 1264
21.4.10 HTTPBasicAuthHandler Objects 1265
21.4.11 ProxyBasicAuthHandler Objects 1265
21.4.12 AbstractDigestAuthHandler Objects 1265
21.4.13 HTTPDigestAuthHandler Objects o v v i ittt e e e o 1265
21.4.14 ProxyDigestAuthHandler Objects 1265
21.4.15 HTTPHandler Objects i et et e e 1265
21.4.16 HTTPSHandler Objects o i i ittt i e 1265
21.4.17 FileHandler Objects o i i i e e e e e e e 1265
21.4.18 DataHandler Objects o it e e e e e e e e e e e 1266
21.4.19 FTPHandler Objects o v v i i e e e e e e e e e e e e e e e e e 1266
21.4.20 CacheFTPHandler Objects ittt i 1266
21.4.21 UnknownHandler Objects e 1266
21.4.22 HTTPErrorProcessor Objects i ittt it e et e 1266
21.4.23 Examples e e e e e e 1267
21.4.24 Legacyinterface oL e e e e e e e e e e e 1269
21425 urllib.request Restrictions e 1271
21.5 urllib.response —Responseclassesusedbyurllib 1272
21.6 urllib.parse —Parse URLsinto components 1272
21.6.1 URLParsing e e e 1273

xii

21.6.2 Parsing ASCITEncoded Bytes i ittt 1277

21.6.3 Structured Parse Results L 1277
21.6.4 URLQUOLNZ o vttt e e e e e e e e e e e e e e e 1278
21.7 urllib.error — Exception classes raised by urllib.request 1280
21.8 urllib.robotparser — Parserforrobots.txt 1281
219 http—HTTPmodules e 1282
21.9.1 HTTPstatus codes o v v i i ittt e et e e e e e 1283
21.92 HTTPmethods e e 1285
21.10 http.client — HTTP protocolclient 1285
21.10.1 HTTPConnection Objects i it ettt 1288
21.10.2 HTTPResponse Objects oo v v ittt e i e e e e e e e 1290
21.10.3 Examples o e e e e e e e e e e e e e e e e e 1291
21.10.4 HTTPMessage ObJects o v v v v v i e e e e e e e e e e e e e e e e e 1292
21.11 ftplib —FTP protocol client e 1292
21111 FTPODJECtS o o i e e e e e e e e e e e e e e e e e e e 1294
21.11.2 FTP_TLS Objects o v it e e e e e e e e e e e e e e e e 1297
21.12 poplib —POP3 protocol client e e e e 1297
21.12.1 POP3 ODbJECES . . . v v v o o o e e e e e e e e e e e e e e e e e 1298
21.12.2 POP3 Example o o e e e e e e e 1300
21.13 imaplib —IMAP4 protocol client L e 1300
21.13.1 IMAP4 ODbjects o ot i e e e e e e 1302
21.13.2 IMAP4 Example e e e e 1307
21.14 smtplib — SMTP protocol client e 1307
21.14.1 SMTP ODbjects o o o e e e e e e e 1309
21.142 SMTP Example e e 1313
21.15 vuid — UUID objects according to RFC 4122 1313
21.15.1 Example L. e e e e 1316
21.16 socketserver — A framework for network servers oL 1317
21.16.1 Server Creation NOtES o v v v ittt et e e e e e e e e e e 1318
21.16.2 Server Objects o oL e e e e e e e 1319
21.16.3 Request Handler Objects e 1321
21.16.4 Exampleso e e e e e e e e e 1321
21.17 http.server — HTTPservers 0 0 i i e i et e 1325
21.17.1 Security Considerations v v v v vt e e e e e e e e e e e e e e 1331
21.18 http.cookies — HTTP state management oot v v v v v v .. 1331
21.18.1 Cookie Objects e e e 1332
21.18.2 Morsel Objects L 1332
21183 Example e e e 1333
21.19 http.cookiejar — Cookie handling for HTTP clients 1334
21.19.1 CookielJar and FileCookieJar Objects v v v i i v it e e et 1336
21.19.2 FileCookieJar subclasses and co-operation with web browsers 1338
21.19.3 CookiePolicy Objects 1338
21.19.4 DefaultCookiePolicy Objectso v i vttt 1339
21.19.5 Cookie ObJeCtS . . . v v v v o e e e e e e e e e e e e e e e e e e 1341
21.19.6 Examples e e e e e e e e e e e 1342
21.20 xmlrpc — XMLRPC server and client modules 1343
21.21 xmlrpc.client — XML-RPCclientaccess oo i i i i v 1343
21.21.1 ServerProxy Objects o i e e e e 1345
21.21.2 DateTime ObJects v o v i e it e e e e e e e e e 1346
21.21.3 Binary ObJects o o v v o e e e e e e e e e e e e e e e e e 1346
21.21.4 Fault Objects o o i it e e e e e e 1347
21.21.5 ProtocolError Objects e 1348
21.21.6 MultiCall Objects o o e e e e e e 1348
21.21.7 Convenience Functions 1349
21.21.8 Example of Client Usage o v v i vt i e e e e e e e e e 1350
21.21.9 Example of Client and Server Usage v i i ... 1350
21.22 xmlrpc.server — Basic XML-RPCservers. 1350
21.22.1 SimpleXMLRPCServer Objects 1351

xiii

22

23

24

25

21.22.2 CGIXMLRPCRequestHandler
21.22.3 Documenting XMLRPC server e
21.22.4 DocXMLRPCServer Objects o o v i i e e e e e e e e
21.22.5 DocCGIXMLRPCRequestHandler
21.23 ipaddress — IPv4/IPv6 manipulation library,
21.23.1 Convenience factory functions oL
21232 TP AdAIesses o it e e e e e e e
21.23.3 IP Network definitions
21.23.4 Interface objects L L
21.23.5 Other Module Level Functions
21.23.6 Custom Exceptions e

Multimedia Services

22.1 wave —Read and write WAV files
22.1.1 Wave_read Objects o it e e e e e
22.1.2 Wave_write ObJECtS o v v o i e e e e e e e e e e e e e

22.2 colorsys — Conversions between color SyStemso v e e e e e

Internationalization

23.1 gettext — Multilingual internationalization services
23.1.1 GNUgettext APl e
23.1.2 Class-based APL L. e
23.1.3 Internationalizing your programs and modules
23.1.4 Acknowledgementso e e e e

23.2 locale — Internationalization services o oo
23.2.1 Background, details, hints, tipsand caveats e
23.2.2 For extension writers and programs that embed Python
23.2.3 Accesstomessage catalogs L. L. e e e

Program Frameworks

24.1 turtle —Turtlegraphics L e
24.1.1 Introduction L e e e e
24.1.2 Overview of available Turtle and Screen methods
24.1.3 Methods of RawTurtle/Turtle and corresponding functions
24.1.4 Methods of TurtleScreen/Screen and corresponding functions
24.1.5 Publicclasses e e e
24.1.6 Help and configuration e
24177 turtledemo—DemosCripts
24.1.8 Changessince Python 2.6 e
24.1.9 Changessince Python 3.0 e

24.2 cmd — Support for line-oriented command interpreters oL
2421 CmdObjects e e
2422 CmdExample e e e

243 shlex — Simple lexical analysiso
24.3.1 shlex ObJECtS v v vt i e e e e e e e e e e e e
2432 ParsingRules e e e e
24.3.3 Improved Compatibility with Shells

Graphical User Interfaces with Tk

25.1 tkinter —Pythoninterfaceto Tcl/Tk
25.1.1 Architecture e e e e e e e e e
25.1.2 Tkinter Modules
25.1.3 Tkinter Life Preserver e
25.1.4 Threadingmodel e e e e
25.1.5 Handy Reference e e e e
25.1.6 FileHandlers e

25.2 tkinter.colorchooser — Color choosingdialog

253 tkinter.font — Tkinter font wrappero

254 Tkinter Dialogs e e e

Xiv

25.4.1 tkinter.simpledialog — Standard Tkinter input dialogs 1449

2542 tkinter.filedialog— Fileselectiondialogs 1449
2543 tkinter.commondialog— Dialog window templates 1452
25.5 tkinter.messagebox — Tkinter message prompts 1452
25.6 tkinter.scrolledtext — Scrolled Text Widget 1453
257 tkinter.dnd—Draganddropsupport 1453
25.8 tkinter.ttk —Tkthemedwidgets i 1454
25.8.1 Using Ttk 0 e e e e 1454
25.82 Tk WIdgets o v v e e e e e e e 1455
2583 Widget. o o e e e 1455
25.8.4 CombobOX e e 1457
25.8.5 SpinboxX e e e 1458
25.8.6 Notebook 1459
25.8.7 Progressbar e e e 1462
25.8.8 Separator e e e 1463
25.8.9 Sizegrip e e e 1463
25.8.10 Treeview o o o i e e e e e e e e e e e 1463
25.8.11 Ttk Styling o o e e e e 1469
259 tkinter.tix—Extensionwidgetsfor Tk 1472
25.9.1 Using TiX o it i e e e e 1472
2592 TIXWIAZets o e e e e e 1473
2593 TixCommands o it e e e e 1476
2510 IDLE e e e e e 1477
25.10.1 Menus e e 1477
25.10.2 Editing and Navigation e 1481
25.10.3 Startup and Code Execution oL o 1484
25.10.4 Help and Preferences e 1487
25.10.5 idlelibo e e e e 1488
26 Development Tools 1489
26.1 typing—Supportfortypehints L. L 1489
26.1.1 RelevantPEPs 1490
26.1.2 Typealiases o v v i e e e e e e e e e e e e 1490
26.1.3 NewType o o i e e e e 1491
26.1.4 Callable 1492
260.1.5 GENETICS . « v v v v v i e e e e e e e e e 1493
26.1.6 User-defined generic types v v v v v v v e e e e e e e e e e e e e e e 1493
26.1.7 The ANy tYPe . . . v v i i e e e e e e e e e e e e e e e e e e e 1495
26.1.8 Nominal vs structural subtyping oL 1496
26.1.9 Modulecontentso e e e e e e e e e e e e e e 1497
26.1.10 Deprecation Timeline of Major Features 1528
26.2 pydoc — Documentation generator and online help system 1528
26.3 Python DevelopmentMode e e e e e e 1529
26.4 Effects of the Python Development Mode 1529
26.5 ResourceWarning Example Lo o e 1530
26.6 Badfile descriptor errorexampleo L Lo oL 1531
26.7 doctest — Test interactive Python examples L. 1532
26.7.1 Simple Usage: Checking Examples in Docstrings 1534
26.7.2 Simple Usage: Checking ExamplesinaTextFile 1535
2673 HowlItWorks o e 1536
26.7.4 Basic APL 1543
26.7.5 Unittest APL 1544
26.7.6 Advanced API 1546
26.7.7 Debugging e e e e e e e e e e e e 1551
26.7.8 S0apboX e e e e e 1553
26.8 unittest — Unittesting framework oL o oL 1554
26.8.1 Basicexamplel e e 1555
26.8.2 Command-Line Interface 1556

XV

27

26.8.3 TestDiSCOVEry v o v v it i e e e e e e e e e 1557

26.8.4 Organizingtestcode o e e e e e e e e e e e 1559
26.8.5 Re-usingoldtestcode L e e 1560
26.8.6 Skipping tests and expected failures 0oL oo 1561
26.8.7 Distinguishing test iterations using subtestso .. 1562
26.8.8 Classesand functionst e e e 1563
26.8.9 Class and Module Fixtures e 1582
26.8.10 Signal Handling L e e e 1583
269 unittest.mock —mockobjectlibrary L 1584
269.1 QuickGuide L e e e 1584
2692 TheMock Class o o o i e e 1586
2693 Thepatchers L e e e e 1602
26.9.4 MagicMock and magic method supporto 1611
26.9.5 Helpers e e e 1614
26.10 unittest.mock —gettingstarted L oL o 1622
26.10.1 UsingMock o o e e 1622
26.10.2 Patch Decorators i e e e e e 1627
26.10.3 Further Examples o 0 e e e e e e e e e 1629
26.11 2to3 — Automated Python 2 to 3 code translation 1641
26.11.1 Using 2t03 e e e e e e e e e e e e e 1642
20.11.2 FIXers v v i v i e e e e e e 1643
26.11.3 1ib2to3 —2to3’slibrary L 1647
26.12 test — Regression tests package for Python o .. 1647
26.12.1 Writing Unit Tests for the test package 1648
26.12.2 Running tests using the command-line interface 1649
26.13 test.support — Utilities for the Python testsuite 1650
26.14 test .support.socket_helper — Utilities for socket tests 1658
26.15 test.support.script_helper — Utilities for the Python execution tests 1659
26.16 test.support.bytecode_helper — Support tools for testing correct bytecode generation 1660
26.17 test.support.threading_helper — Utilities for threading tests 1661
26.18 test.support.os_helper — Utilities forostests 1662
26.19 test.support.import_helper — Utilities for import tests 1663
26.20 test.support.warnings_helper — Utilities for warnings tests 1665
Debugging and Profiling 1667
27.1 Auditeventstable e e 1667
27.2 bdb —Debugger framework 1671
27.3 faulthandler — Dump the Python traceback 1676
27.3.1 Dumpingthe traceback o 1677
27.3.2 Faulthandlerstate L i e e e e e 1677
27.3.3 Dumping the tracebacks afteratimeout L. 1677
27.3.4 Dumping the traceback onausersignal L 1677
27.3.5 [Issue with file descriptors o o i e e e e e e 1678
273.6 Example L. e e e e e e e e e e 1678
274 pdb —The Python Debugger 1678
27.4.1 Debugger Commandso e 1680
27.5 The Python Profilers e 1684
27.5.1 Introduction tothe profilers 1684
2752 Instant User's Manual e 1685
2753 profileand cProfile Module Reference 1687
2754 The Stats Class o L e e e 1688
27.5.5 What Is Deterministic Profiling? 1690
27.5.6 LIMItations o it e e e e e e e e e e e e e 1691
2757 Calibration. e e e e e 1691
27.5.8 Usingacustom tMEr v v v v v vt e e e e e e e e e e e e e e e e 1692
27.6 timeit — Measure execution time of small code snippets L. 1692
27.6.1 Basic Examples 1692
27.6.2 Pythonlnterface 1693

xvi

27.6.3 Command-Line Interface e 1695

27.6.4 Examples e e e e e e e e e e e 1695
2777 trace — Trace or track Python statement execution 1697
27.7.1 Command-Line Usage 1697
27.7.2 Programmatic Interface oo oo 1699
27.8 tracemalloc — Trace memory allocations 1700
27.8.1 Examples e e e e e e e e e e e e 1700
27.82 APL . . e 1704
28 Software Packaging and Distribution 1711
28.1 distutils — Building and installing Python modules 1711
28.2 ensurepip — Bootstrapping the pipinstaller 1712
28.2.1 Command lineinterface oL 1712
28.22 Module APT 1713
28.3 venv — Creation of virtual environmentso 1713
28.3.1 Creating virtual environments v v v v e i e e e e e e e e e e e 1714
28.3.2 APL . . e e 1716
28.3.3 Anexample of extending EnvBuilder o 1718
28.4 zipapp — Manage executable Python zip archives oL oL 1722
28.4.1 BasicExample oL 1722
28.4.2 Command-Line Interface 1722
28.4.3 Python APL 1723
2844 Examples e e e e e e e e e 1724
28.4.5 Specifying the Interpreter L. Lo 1725
28.4.6 Creating Standalone Applications with zipapp 1725
28.4.7 The Python Zip Application Archive Format 1727
29 Python Runtime Services 1729
29.1 sys — System-specific parameters and functions oo oL L. 1729
29.2 sysconfig— Provide access to Python’s configuration information 1749
29.2.1 Configuration variables L e e e e e 1750
29.22 Installationpaths. e 1750
29.2.3 Other functions o i e e e e e e 1752
29.2.4 Using sysconfigasascriptottt e e 1753
293 builtins—Built-inobjectso 1753
294 __main__ — Top-level code environment e 1754
2941 __name_ == '_main__ " ... e 1754
2942 _ _main__ .pyinPythonPackages L. 1757
2043 dmport _ main_ ... e e e e e e e e e e e e e e 1758
29.5 warnings — Warningcontrol L 1759
29.5.1 Warning Categori€s v v v v v v e 1760
29.5.2 The Warnings Filter e e e e 1760
29.5.3 Temporarily Suppressing Warnings oo 1763
29.5.4 Testing Warningso e e e e 1763
29.5.5 Updating Code For New Versions of Dependencies 1764
29.5.6 Available Functions 1764
29.5.7 Available Context Managers v v v v it e e e e e e e e e e e e e e 1765
29.6 dataclasses—DataClasses. i e 1765
29.6.1 Modulecontents L L L e e e e e e e e e 1766
29.6.2 PoSt-init Processing e e e e e e e e e 1772
29.6.3 Classvariables e e 1772
29.6.4 Init-only variables e e e e e e e e e 1772
29.6.5 FrozeninStancCes it e e e e e e e 1773
29.6.6 Inheritance L. e e e 1773
29.6.7 Re-ordering of keyword-only parametersin __init__ () 1773
29.6.8 Default factory functions 1774
29.6.9 Mutabledefault values 1774
29.6.10 Descriptor-typed fields e 1775

Xvii

30

31

29.7 contextlib — Utilities for with-statement contexts v v v v v v v ... 1776

20.7.1 UHHEs o o e e e e e e e e e e e 1776
29.7.2 Examplesand Recipes L e e 1784
29.7.3 Single use, reusable and reentrant context managers 1788
29.8 abc—Abstract Base Classes e e e e e e 1790
299 atexit —Exithandlers 1794
299.1 atexit Example. e e e e 1795
29.10 traceback — Print or retrieve a stack traceback o oL 1796
29.10.1 TracebackExceptionObjects v i i it v i 1798
29.10.2 StackSummary Objects 1799
29.10.3 FrameSummary Objects e 1800
29.10.4 Traceback Examples L e 1800
29.11 _ future_ — Future statement definitions e 1802
29.12 gc — Garbage Collector interface oL e 1804
29.13 inspect —Inspectliveobjects oL oL e 1807
29.13.1 Typesand memberso e e e e e e e 1807
29.13.2 Retrievingsource codeo i e e e e e e 1811
29.13.3 Introspecting callables with the Signature object 1812
29.13.4 Classesand functions e e 1817
29.13.5 The interpreter stack L e 1819
29.13.6 Fetchingattributes statically e 1821
29.13.7 Current State of Generators and Coroutines oo 1822
29.13.8 Code Objects Bit Flags i e e e e e e e 1823
29.13.9 Command Line Interface L o 1824
29.14 site — Site-specific configurationhook 0oL oL 1824
29.14.1 Readline configuration oo e e 1825
29.14.2 Module contents L. e e e e e e e e e e e 1826
29.14.3 Command Line Interface 1827
Custom Python Interpreters 1829
30.1 code —Interpreter base classeso 1829
30.1.1 Interactive Interpreter Objects L 1830
30.1.2 Interactive Console Objects e 1830
30.2 codeop — Compile Pythoncode 1831
Importing Modules 1833
31.1 zipimport — Import modules from Zip archives 1833
31.1.1 zipimporter Objects e 1834
31.1.2 Examples 1835
31.2 pkgutil — Package extension utility 1835
31.3 modulefinder —Find modulesused by ascript 1838
31.3.1 Example usage of ModuleFinder v v i v vt vt i 1839
31.4 runpy — Locating and executing Pythonmodules 1840
31.5 importlib — The implementation of import 1842
31.5.1 Introduction L e e e e e 1842
31.52 Functions i e e e e 1843
31.5.3 importlib.abc — Abstract base classes related toimport 1844
31.54 importlib.machinery —Importers and pathhooks 1850
3155 importlib.util - Utility code for importers 1855
31.5.6 Examples e e e 1858
31.6 importlib.resources—Resources e 1860
31.7 Deprecated functions o i e e e e e e e e e e e e e e 1861
31.8 importlib.resources.abc — Abstract base classes for resources 1863
319 Using importlib.metadata i it i e e 1864
31.9.1 OVEIVIEW o i it e e e e e e e e e e e e 1865
31.9.2 Functional APT 1865
31.93 Distributionso e e e e e e 1868
31.9.4 Extending the search algorithm 1868

xviii

31.10 The initialization of the sys.path module searchpath. 1869

31.10.1 Virtual environmentsot h e e e e e e e e e e e 1869
31.10.2 _pthfiles o o e e e 1870
31.10.3 Embedded Python L 1870

32 Python Language Services 1871
32.1 ast — Abstract Syntax Trees L e 1871
32.1.1 Abstract Grammarot e e e e e e e e e e e e e e e e 1871
32.1.2 Nodeclasses o o it e e e e 1874
32.1.3 ast Helpers. e e e e e e e e 1900
32.1.4 Compiler Flags o 0 o e e e e 1903
32.1.5 Command-Line Usage i ittt e 1903
32.2 symtable — Access to the compiler’s symbol tables 1904
32.2.1 Generating Symbol Tables 1904
32.2.2 Examining Symbol Tables 1904
32.3 token — Constants used with Python parsetrees 1906
32.4 keyword — Testing for Python keywords 1910
32.5 tokenize — Tokenizer for Pythonsource oL 1910
32.5.1 TokenizingInput 1910
3252 Command-Line Usage 1912
3253 Examples . . . oL .. e e e e e e e e e e e e e 1912
32.6 tabnanny — Detection of ambiguous indentation00 1914
3277 pyclbr — Python module browser support o 1914
32.77.1 Function Objects e e 1915
3272 ClassObjects v v v i e e e e e e 1916
32.8 py_compile — Compile Pythonsourcefiles 1916
32.8.1 Command-Line Interface 1918
329 compileall — Byte-compile Python libraries 1918
32.9.1 Command-line USe o i i e e e e e e e e 1918
32.9.2 Publicfunctions L e e e e e e 1920
32.10 dis — Disassembler for Python bytecode oo o L. 1922
32.10.1 Bytecode analysis v vt i e e e e e e e e e e e e e e e 1923
32.10.2 Analysis functions e e e e e e e 1924
32.10.3 Python Bytecode Instructions L 1926
32.10.4 Opcodecollections L 1937
32.11 pickletools — Tools for pickle developers 1937
32.11.1 Command ine Uusage v v v v it e e e e e e e e e e e e e e 1937
32.11.2 Programmatic Interface e 1938

33 MS Windows Specific Services 1939
33.1 msvcrt — Useful routines from the MS VC++runtime 1939
33.1.1 File Operations o v v it e e e e e e e e e e e e e e e 1939
33.1.2 ConsoleI/O e 1940
33.1.3 Other Functions e e 1940
332 winreg— Windows registry aCCess« v v v vttt i e e e e e e e e e e 1941
33.2.1 Functions e e e e e 1941
3322 ConStantSt e e e e e e e e e e e e e e e e e e 1946
33.23 Registry Handle Objects e 1948
33.3 winsound — Sound-playing interface for Windowso 0oL 1949

34 Unix Specific Services 1953
34.1 posix — The most common POSIX systemcalls. 1953
34.1.1 LargeFile Support e 1953
34.1.2 Notable Module Contentsot v ittt e 1954
342 pwd—Thepassworddatabase e e e e e e e 1954
343 grp—Thegroupdatabase o i i i e e e e e e e e e 1955
344 termios —POSIXstylettycontrol e 1956
3441 Example L. e e e 1957
34,5 tty— Terminal control functions e e e e e 1957

Xix

35

34.6 pty —Pseudo-terminal utilities e e e 1957
34.6.1 Example L e e e e e e e e e e e 1958
347 fcntl—The fcntland ioctlsystemcalls. L 1959
34.8 resource — Resource usage information 0oL 0oL 1961
348.1 Resource Limits L. 1961
3482 ResourceUsage e 1964
349 syslog—Unixsysloglibraryroutines o v v v i i vt e e e e 1965
3490.1 Examples e e e e e e e e e e e 1967
Superseded Modules 1969
35.1 aifc—Readand write AIFFand AIFCfiles 1969
35.2 asynchat — Asynchronous socket command/response handler 1971
35.2.1 asynchatExample L e 1973
353 asyncore — Asynchronous sockethandler 0000000, 1974
35.3.1 asyncore Example basic HTTP client 1977
35.3.2 asyncore Example basicechoserver. e 1977
354 audiocop — Manipulaterawaudiodata. Lo 1978
35.5 cgi — Common Gateway Interface support oL 1981
35.5.1 Introduction e e e e e e e e e e e e e e e 1981
35,52 Usingthecgimodule 1982
35.5.3 Higher Level Interface e e 1983
35.54 Functions i e e e e 1984
35.5.5 Caringaboutsecurity L e e e e e 1985
35.5.6 Installing your CGI scriptona Unixsystem 1986
35.5.7 Testingyour CGIscript o oo 1986
35.5.8 Debugging CGISCIIpts o v v i it i e e e e e e 1986
35.5.9 Common problems and solutions e 1987
35.6 cgitb — Traceback manager for CGIscripts. oo v i it e o 1988
3577 chunk —Read IFF chunkeddata 1989
35.8 crypt — Function to check Unix passwords oo 1990
35.8.1 HashingMethods 1990
35.8.2 Module Attributes L L L e e e 1991
35.83 Module Functions e 1991
3584 Examples e e e e e e e 1991
35.9 imghdr — Determine the type of animage L L. 1992
35.10 imp — Access the importinternals L. L 1993
35.10.1 Examples e e e e e e e e e e e e e e 1997
35.11 mailcap — Mailcap filehandling 1997
35.12 msilib — Read and write Microsoft Installer files 1999
35.12.1 Database Objects e 2000
35122 View Objects o i it e e e e e 2000
35.12.3 Summary Information Objects L 2001
35.12.4 Record ObJectS o v v i v e e e e e e e e e e e e e e e 2001
35.12.5 EIrors oL e e e e e e e e e 2002
35.12.6 CABObjects o o e e e e 2002
35.12.7 Directory Objects o o i i e e e e e e e e e e e e e e 2002
35.12.8 Features i e e e e e 2003
35.12.9 GUICIASSES . . . v v v o it e e e e e e e e e e e e e e 2003
35.12.10Precomputed tables L e e e e e e e 2004
35.13 nis — Interface to Sun’s NIS (Yellow Pages) 2004
35.14 nntplib — NNTP protocol client 2005
35.14.1 NNTP Objects o o v vt e e e e e e e s e e 2007
35.14.2 Utility functions o L. e e e e e e e 2011
35.15 optparse — Parser for command lineoptions oL 2012
35.15.1 Background L. e e e e 2013
35.15.2 Tutorial L e e e e e 2015
35.15.3 Reference Guide 2022
35.15.4 Option Callbacks e 2031

XX

36

35.15.5 Extending 0pLtparse . . . v v i i e e e e e e e e e e e e e e e e e e 2034

35.16 ossaudiodev — Access to OSS-compatible audio devices 2037
35.16.1 Audio Device Objects o o v v i e e e e e e e e 2038
35.16.2 Mixer Device Objects L e 2040

35.17 pipes — Interface to shell pipelines 2042
35.17.1 Template Objects i e e e e e 2042

35.18 smtpd — SMTP Server e e e 2043
35.18.1 SMTPServer Objects o v i v i e e e e e e e e e e e e e e 2043
35.18.2 DebuggingServer Objects e 2044
35.18.3 PureProxy Objects e 2044
35.18.4 SMTPChannel Objects o it e 2044

35.19 sndhdr — Determine type of sound file 2046

35.20 spwd — The shadow password database e 2047

35.21 sunau—Read and write Sun AUfiles L o 2047
35.21.1 AU_read Objects o o v i i e e e e e e e e 2049
3521.2 AU_write Objects o v o v e e e e e e e 2050

3522 telnetlib—Telnetclient e 2050
35221 Telnet OBJects v v v v o e 2051
35.22.2 Telnet Example o e e e e e e 2053

35.23 uu — Encode and decode uuencode files oL oL oo 2053

35.24 xdrlib — Encode and decode XDR data 2054
35.24.1 Packer Objects o i e e e e 2054
35.24.2 Unpacker Objects o v v i i e e e e e e e e e e e e e e e e 2055
35243 EXCEPLONS « . v v v v v i e 2056

Security Considerations 2059

Glossary 2061

About these documents 2075

B.1 Contributors to the Python Documentation 2075

History and License 2077

C.1 Historyof thesoftware e 2077

C.2 Terms and conditions for accessing or otherwise using Python 2078
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 3.11.0 2078
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 2079
C.2.3 CNRILICENSE AGREEMENT FOR PYTHON 1.6.1 2080
C.2.4 CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 2081
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.11.0 DOCUMEN-

TATION e e 2081

C.3 Licenses and Acknowledgements for Incorporated Software 2082
C3.1 Mersenne TWIStEr o o vttt e e e 2082
C32 Sockets o o e e 2083
C.3.3 Asynchronous socket Services o 2083
C34 Cookiemanagement 2084
C.3.5 ExXecution traCing v v v v it b e e e e e e e e e e 2084
C.3.6 UUencode and UUdecode functions oo v v i v it i i 2085
C3.7 XML Remote Procedure Calls 2085
C.3.8 test_epoll L e e e e e 2086
C39 Selectkqueue 2086
C3.10 SipHash24 e e e 2087
C3.11 strtodanddtoa. oL e 2087
C3.12 OpenSSL . . . o o e e 2088
C3I3 eXPat. . . o o v ot e e e e e e e e e e e 2090
C3.14 Libfli . . . oo e e e 2090
C3.05 zlib . . . e e 2091
C3.16 cfuhash e 2091
C3.17 Hbmpdec e e e e e e e e e 2092

xXi

C.3.18 W3C CI14N test suite
D Copyright
Bibliography
Python Module Index

Index

2095

2097

2099

2103

xxii

The Python Library Reference, Release 3.11.0

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages, so
it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the optional
components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.11.0

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

¢ An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

* If not separately noted, all functions that claim “Availability: Unix” are supported on macOS, which builds on
a Unix core.

* If an availability note contains both a minimum Kernel version and a minimum libc version, then both condi-
tions must hold. For example a feature with note Availability: Linux >= 3.17 with glibc >= 2.27 requires both
Linux 3.17 or newer and glibc 2.27 or newer.

The Python Library Reference, Release 3.11.0

1.1.1 WebAssembly platforms

The WebAssembly platforms wasm32-emscripten (Emscripten) and wasm32-wasi (WASI) provide a subset
of POSIX APIs. WebAssembly runtimes and browsers are sandboxed and have limited access to the host and external
resources. Any Python standard library module that uses processes, threading, networking, signals, or other forms
of inter-process communication (IPC), is either not available or may not work as on other Unix-like systems. File
I/0, file system, and Unix permission-related functions are restricted, too. Emscripten does not permit blocking I/O.
Other blocking operations like sIeep () block the browser event loop.

The properties and behavior of Python on WebAssembly platforms depend on the Emscripten-SDK or WASI-SDK
version, WASM runtimes (browser, NodeJS, wasmtime), and Python build time flags. WebAssembly, Emscripten,
and WASI are evolving standards; some features like networking may be supported in the future.

For Python in the browser, users should consider Pyodide or PyScript. PyScript is built on top of Pyodide, which
itself is built on top of CPython and Emscripten. Pyodide provides access to browsers’ JavaScript and DOM APIs as
well as limited networking capabilities with JavaScript’s XMLHt t pRequest and Fetch APIs.

* Process-related APIs are not available or always fail with an error. That includes APIs that spawn new processes
(fork (),execve ()),wait for processes (waitpid ()),sendsignals (kil1 ()),or otherwise interact with
processes. The subprocess is importable but does not work.

* The socket module is available, but is limited and behaves differently from other platforms. On Emscripten,
sockets are always non-blocking and require additional JavaScript code and helpers on the server to proxy
TCP through WebSockets; see Emscripten Networking for more information. WASI snapshot preview 1 only
permits sockets from an existing file descriptor.

* Some functions are stubs that either don’t do anything and always return hardcoded values.

* Functions related to file descriptors, file permissions, file ownership, and links are limited and don’t support
some operations. For example, WASI does not permit symlinks with absolute file names.

4 Chapter 1. Introduction

https://webassembly.org/
https://emscripten.org/
https://wasi.dev/
https://emscripten.org/
https://wasi.dev/
https://wasmtime.dev/
https://pyodide.org/
https://pyscript.net/
https://emscripten.org/docs/porting/networking.html>

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed here

in alphabetical order.

Built-in Functions

A E L R
abs () enumerate () len() range ()
aiter/() eval () 1list () repr ()
all/() exec () locals () reversed/()
any () round ()
anext () F M
ascii() filter() map () S

float () max () set ()
B format () memoryview () setattr()
bin() frozenset () min () slice()
bool () sorted()
breakpoint () G N staticmethod ()
bytearray () getattr () next () str()
bytes () globals () sum ()

(0] super ()

C H object ()
callable () hasattr() oct () T
chr () hash () open () tuple ()
classmethod() help() ord() type ()
compile () hex ()
complex () P \Y%

| pow () vars ()
D id() print ()
delattr () input () property () V4
dict () int () zip ()
dir() isinstance()
divmod () issubclass () _

iter() __import__ ()

abs (x,/)

Return the absolute value of a number. The argument may be an integer, a floating point number, or an object

implementing ___abs___

(). If the argument is a complex number, its magnitude is returned.

The Python Library Reference, Release 3.11.0

aiter (async_iterable, /)

Return an asynchronous iterator for an asynchronous iterable. Equivalent to calling x .__aiter__ ().
Note: Unlike iter (), aiter () has no 2-argument variant.
New in version 3.10.

all (iterable, /)

Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

awaitable anext (async_iterator, /)

awaitable anext (async_iterator, default, /)
When awaited, return the next item from the given asynchronous iterator, or default if given and the iterator is
exhausted.

This is the async variant of the next () builtin, and behaves similarly.

This callsthe __anext__ () method of async_iterator, returning an awaitable. Awaiting this returns the next
value of the iterator. If default is given, it is returned if the iterator is exhausted, otherwise St opAsyncIt—
erationis raised.

New in version 3.10.

any (iterable, /)

Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object, /)

As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u, or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

bin (x, /)

Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is
not a Python int object, it has to define an ___index___ () method that returns an integer. Some examples:

>>> bin(3)
'Ob11"

>>> bin (-10)
'-0b1010"

If the prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b'")
('Ob1110', '1110")

>>> f'{14:4b}', £'{14:b}"

('0b1110', '1110")

See also format () for more information.

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

class bool (x=Fulse, /)

Return a Boolean value, i.e. one of True or False. x is converted using the standard rruth festing procedure.
If x is false or omitted, this returns False; otherwise, it returns True. The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)

This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.
set_trace () expecting no arguments. In this case, it is purely a convenience function so you don’t have to
explicitly import pdb or type as much code to enter the debugger. However, sys.breakpointhook ()
can be set to some other function and breakpoint () will automatically call that, allowing you to drop
into the debugger of choice. If sys.breakpointhook () is not accessible, this function will raise Run—
timeError.

Raises an auditing event builtins.breakpoint with argument breakpointhook.
New in version 3.7.

class bytearray (source=b")

class bytearray (source, encoding)

class bytearray (source, encoding, errors)

Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

« If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« Ifitis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

« If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size O is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes (source=b")
class bytes (source, encoding)
class bytes (source, encoding, errors)

Return a new “bytes” object which is an immutable sequence of integers in therange 0 <= x < 256. bytes
is an immutable version of bytearray — it has the same non-mutating methods and the same indexing and
slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().
Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.
callable (object, /)

Return True if the object argument appears callable, F'a 1 se if not. If this returns True, it is still possible
that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); instances are callable if their classhasa__call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

The Python Library Reference, Release 3.11.0

chr (i,/)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ "'. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

Qclassmethod
Transform a method into a class method.

A class method receives the class as an implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2):

The @classmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property ().

Changed in version 3.10: Class methods now inherit the method attributes (__module_ , _ name__,
__qualname_ ,_ _doc__and __annotations__)and have anew __ wrapped___ attribute.

Changed in version 3.11: Class methods can no longer wrap other descriptors such as property ().

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=- 1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source

can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn’t read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single"' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which
future features should be allowed. If neither is present (or both are zero) the code is compiled with the same
flags that affect the code that is calling compi le (). If the flags argument is given and dont_inherit is not (or
is zero) then the compiler options and the future statements specified by the flags argument are used in addition
to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it — the
flags (future features and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify
multiple options. The bitfield required to specify a given future feature can be found as the compiler_flag
attribute on the _Feature instance in the __ future__ module. Compiler flags can be found in ast
module, with PyCF__ prefix.

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are 0 (no optimization; ___debug___
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed too).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source con-
tains null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

Raises an auditing event compile with arguments source and £ilename. This event may also be raised
by implicit compilation.

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be termi-
nated by at least one newline character. This is to facilitate detection of incomplete and complete statements
in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when
compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also, input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

New in version 3.8: ast . PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable support
for top-level await, async for,and async with.

class complex (real=0, imag=0)
class complex (string, /)

Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and f1oat. If both arguments are omitted, returns 0.

For a general Python object x, complex (x) delegates to x.___complex_ (). If _ _complex__ ()
is not defined then it falls back to ___float__ (). If _ float__ () is not defined then it falls back to
__index__ ().

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex ('1+273") is fine, but complex ('l + 23') raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls back to __index__ () if _ _complex__ () and __float__ () are not
defined.

delattr (object, name, /)
This is arelative of setattr (). The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr (x, 'foobar') isequivalenttodel x.foobar. name need not be a Python identifier (see
setattr()).

class dict (**kwarg)

class dict (mapping, /, **kwarg)

class dict (iterable, /, **kwarg)

Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for

documentation about this class.
For other containers see the built-in 11 st, set, and tuple classes, as well as the collections module.

dir ()

The Python Library Reference, Release 3.11.0

dir (object, /)

Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or __getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
___dict___ attribute, if defined, and from its type object. The resulting list is not necessarily complete and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

» Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recur-
sively of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins__ ', '__name_ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all__ ', '_ builtins__ ', '_ _cached__', '__doc__"', '_ file_ ',
' initializing__ ', '__loader__', '__name__', '_ package_ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_from']
>>> class Shape:

def _ dir_ (self):

C return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir(s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of names,
and its detailed behavior may change across releases. For example, metaclass attributes are not in the result list
when the argument is a class.

divmod (a, b, /)

Take two (non-complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(g, a % b),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycase g * b
+ a % bisveryclosetoa,if a % b isnon-zero it has the same sign as b,and 0 <= abs(a % b) <

abs (b).

enumerate (iterable, start=0)

Return an enumerate object. iferable must be a sequence, an iterator, or some other object which supports
iteration. The ___next__ () method of the iterator returned by enumerate () returns a tuple containing a
count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list (enumerate (seasons))
[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]

(continues on next page)

10

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> list (enumerate (seasons, start=1))
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression, /, globals=None, locals=None)

The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and
does not contain a value for the key _ builtins__, a reference to the dictionary of the built-in module
builtins is inserted under that key before expression is parsed. That way you can control what builtins are
available to the executed code by inserting your own __builtins___ dictionary into globals before passing
itto eval (). If the locals dictionary is omitted it defaults to the globals dictionary. If both dictionaries are
omitted, the expression is executed with the globals and locals in the environment where eval () is called.
Note, eval() does not have access to the nested scopes (non-locals) in the enclosing environment.

The return value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x =1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case, pass a code object instead of a string. If the code object has been compiled with 'exec' as the
mode argument, eval ()'s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and 1o-
cals () functions return the current global and local dictionary, respectively, which may be useful to pass
around for use by eval () or exec ().

If the given source is a string, then leading and trailing spaces and tabs are stripped.

See ast.literal eval () for afunction that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

exec (object, globals=None, locals=None, /, *, closure=None)

This function supports dynamic execution of Python code. object must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be
valid as file input (see the section file-input in the Reference Manual). Be aware that the nonlocal, yield,
and return statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and
the local variables. If globals and locals are given, they are used for the global and local variables, respectively.
If provided, locals can be any mapping object. Remember that at the module level, globals and locals are the

! Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

11

The Python Library Reference, Release 3.11.0

same dictionary. If exec gets two separate objects as globals and locals, the code will be executed as if it were
embedded in a class definition.

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto exec ().

The closure argument specifies a closure—a tuple of cellvars. It’s only valid when the object is a code object
containing free variables. The length of the tuple must exactly match the number of free variables referenced
by the code object.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Note: The built-in functions globals () and Iocals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function Iocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

Changed in version 3.11: Added the closure parameter.

filter (function, iterable, /)

clas

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iferable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if functionis not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

s float (x=0.0, /)

Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional signmaybe '+' or ' —';a '+ "' sign has no effect on the value produced.
The argument may also be a string representing a NaN (not-a-number), or positive or negative infinity. More
precisely, the input must conform to the following grammar after leading and trailing whitespace characters
are removed:

Slgl’l L "+" | n_mn

infinity = "Infinity" | "inf"

nan = "nan"

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here £ loatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY”, and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same value
(within Python’s floating point precision) is returned. If the argument is outside the range of a Python float, an
OverflowError will be raised.

12

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

For a general Python object x, f1oat (x) delegatestox.___float__ ().If __float__ () isnotdefined
then it falls back to ___index__ ().

If no argument is given, 0. O is returned.

Examples:

>>> float ('+1.23")

1.23

>>> float (' -12345\n")
-12345.0

>>> float ('1le-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types

int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if __float__ () is not defined.

format (value, format_spec=", /)

Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument; however, there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) istranslated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s ___format__ ()

method. A TypeError exception is raised if the method search reaches object and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.
class frozenset (iterable=set(), /)

Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name, /)
getattr (object, name, default, /)

Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised. name need not be a Python identifier (see setattr ()).

Note: Since private name mangling happens at compilation time, one must manually mangle a private at-
tribute’s (attributes with two leading underscores) name in order to retrieve it with getattr ().

globals ()

Return the dictionary implementing the current module namespace. For code within functions, this is set when
the function is defined and remains the same regardless of where the function is called.

13

The Python Library Reference, Release 3.11.0

hasattr (object, name, /)

The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an Att ributeError or not.)

hash (object, /)

Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash__ () methods, note that hash () truncates the return value based
on the bit width of the host machine. See __hash__ () for details.

help ()
help (request)

Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function when invoking help (), it means that the
parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only param-
eters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x, /)

Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int
object, it has to define an __index___ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!

>>> hex (-42)
'-0x2a'’

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> ! "% 255, ! ''% 255, ! "% 255

('oxff', 'f£f', 'FEF')

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('Oxff', 'f£f', 'FEF')

>>> f£'{255:4#x}"', £'{255:x}', £'{255:X}"'

('oxff', 'ff', 'FEF'")

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object, /)

Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

Raises an auditing event builtins . id with argument id.

input ()

input (prompt, /)
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('-—> ")
--> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins.input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int (x=0,/)

class int (x, /, base=10)
Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x defines __int_ (), int (x) returns x.__int__ (). If x defines __index__ (), it returns x.
__index__ (). If x defines __trunc__ (), itreturns x.__trunc__ (). For floating point numbers,
this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits O to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2—-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010', 0) is not legal,
while int ('010") is,aswellas int ('010', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.___index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int_
instead of base.__index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if __int__ () is not defined.
Changed in version 3.11: The delegation to __trunc___ () is deprecated.

Changed in version 3.11: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueError israised when the limit is exceeded while converting a string x to an int or
when converting an int into a string would exceed the limit. See the integer string conversion length limitation
documentation.

isinstance (object, classinfo, /)
Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect, or virtual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo is a
tuple of type objects (or recursively, other such tuples) or a Union Type of multiple types, return True if object
is an instance of any of the types. If classinfo is not a type or tuple of types and such tuples, a TypeError
exception is raised. TypeFError may not be raised for an invalid type if an earlier check succeeds.

Changed in version 3.10: classinfo can be a Union Type.

15

The Python Library Reference, Release 3.11.0

issubclass (class, classinfo, /)

Return True if class is a subclass (direct, indirect, or virtual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects (or recursively, other such tuples) or a Union Type, in which
case return True if class is a subclass of any entry in classinfo. In any other case, a TypeError exception
is raised.

Changed in version 3.10: classinfo can be a Union Type.

iter (object, /)

iter (object, sentinel, /)

Return an iterator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the iter-
able protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is
raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in
this case will call object with no arguments for each call toits ___next___ () method; if the value returned is
equal to sentinel, St opIterat ion will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

from functools import partial
with open ('mydata.db', 'rb') as f:
for block in iter (partial(f.read, 64), b''"):
process_block (block)

len(s,/)

Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: len raises OverflowError on lengths larger than sys.maxsize,
such as range (2 ** 100).

class list

class list (iterable, /)

Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()

Update and return a dictionary representing the current local symbol table. Free variables are returned by 10—
cals () whenitis called in function blocks, but not in class blocks. Note that at the module level, Iocals ()
and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, /, *iterables)

Return an iterator that applies function to every item of iterable, yielding the results. If additional iterables
arguments are passed, function must take that many arguments and is applied to the items from all iterables in
parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where the
function inputs are already arranged into argument tuples, see itertools.starmap ().

max (iterable, /, *, key=None)

max (iterable, /, *, default, key=None)

max (argl, arg2, /, *args, key=None)

Return the largest item in an iterable or the largest of two or more arguments.

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

If one positional argument is provided, it should be an iterable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist . sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

class memoryview (object)

Return a “memory view” object created from the given argument. See Memory Views for more information.
min (iterable, /, *, key=None)
min (iterable, /, *, default, key=None)
min (argl, arg2, /, *args, key=None)

Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned. If
two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist . sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapqg.
nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.
next (iterator, /)

next (iterator, default, /)
Retrieve the next item from the iterator by calling its __next__ () method. If default is given, it is returned
if the iterator is exhausted, otherwise St opIteration is raised.

class object

Return a new featureless object. object is a base for all classes. It has methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a ___dict__, so you can’t assign arbitrary attributes to an instance of the
object class.

oct (x, /)

Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

If you want to convert an integer number to an octal string either with the prefix “0o” or not, you can use either
of the following ways.

17

The Python Library Reference, Release 3.11.0

>>> ! ''% 10, 7 ''% 10

('0o12"', '12")

>>> format (10, '#o0'), format (10, 'o')
('0o12', '12")

>>> f'{10:40}'", £'{10:0}"'

('"0o12", '12")

See also format () for more information.

open (file, mode="r", buffering=- 1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See
tut-files for more examples of how to use this function.

fileis a path-like object giving the pathname (absolute or relative to the current working directory) of the file to
be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed when
the returned I/O object is closed unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are 'w' for writing (truncating the file if it already
exists), 'x ' for exclusive creation, and 'a ' for appending (which on some Unix systems, means that all writes
append to the end of the file regardless of the current seek position). In text mode, if encoding is not specified
the encoding used is platform-dependent: locale.getencoding () is called to get the current locale
encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.) The available
modes are:

Character | Meaning

'r! open for reading (default)

‘w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a’ open for writing, appending to the end of file if it exists
'b! binary mode

't text mode (default)

v open for updating (reading and writing)

The default mode is 'r' (open for reading text, a synonym of 'rt'). Modes 'w+"' and 'w+b' open and
truncate the file. Modes ' r+' and ' r+b"' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass O to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
in bytes of a fixed-size chunk buffer. Note that specifying a buffer size this way applies for binary buffered
I/0, but Text IOWrapper (i.e., files opened with mode="r+") would have another buffering. To disable
buffering in Text IOWrapper, consider using the write_through flag for io. Text TOWrapper.
reconfigure (). When no buffering argument is given, the default buffering policy works as follows:

* Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i 0. DEFAULT _BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

* “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent (whatever Iocale.getencoding () returns), but any
text encoding supported by Python can be used. See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though
any error handling name that has been registered with codecs. register_error () is also valid. The
standard names include:

* 'strict' toraisea ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
* 'replace' causes a replacement marker (such as ' 2 ') to be inserted where there is malformed data.

* 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when the
surrogateescape error handler is used when writing data. This is useful for processing files in an
unknown encoding.

e 'xmlcharrefreplace’ is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference & #nnn; .

* 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

* 'namereplace"' (also only supported when writing) replaces unsupported characters with \N{ . . . }
escape sequences.

newline determines how to parse newline characters from the stream. It can be None, ' ', '\n"', '\r', and
"\r\n"'. It works as follows:

* When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the inputcanendin '\n', "\r',or '\r\n', and these are translated into ' \n' before being returned
to the caller. If it is ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

* When writing output to the stream, if newline is None, any ' \n' characters written are translated to
the system default line separator, os. 1inesep. If newlineis ' ' or '\n', no translation takes place.
If newline is any of the other legal values, any ' \n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd must be True (the default); otherwise, an
error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os. open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open (path, flags, dir_fd=dir_f£fd)

(]

>>> with open('spamspam.txt', 'w', opener=opener) as f:

print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io. TextIOBase

19

The Python Library Reference, Release 3.11.0

(specifically io. Text TOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of io0.BufferedIOBase. The exact class varies: in read binary mode, it returns an
io.BufferedReader;in write binary and append binary modes, it returns an io. Bufferediriter,
and in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream,
a subclass of 10.RawIOBase, io.FileIO,isreturned.

See also the file handling modules, such as i leinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Raises an auditing event open with arguments £ile, mode, flags.
The mode and f1ags arguments may have been modified or inferred from the original call.
Changed in version 3.3:
e The opener parameter was added.
e The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsErrorisnow raised if the file opened in exclusive creation mode (' x ') already exists.
Changed in version 3.4:
¢ The file is now non-inheritable.
Changed in version 3.5:

« If the system call is interrupted and the signal handler does not raise an exception, the function now retries
the system call instead of raising an TnterruptedError exception (see PEP 475 for the rationale).

e The 'namereplace"' error handler was added.
Changed in version 3.6:
* Support added to accept objects implementing os . PathLike.

* On Windows, opening a console buffer may return a subclass of io.RawIOBase other than io.
FileIO.

Changed in version 3.11: The 'U' mode has been removed.

ord (¢, /)

Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a"') returns the integer 97 and ord ('€ ') (Euro sign) returns 8364.
This is the inverse of chr ().

pow (base, exp, mod=None)

Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more
efficiently than pow (base, exp) % mod). The two-argument form pow (base, exp) is equivalent to
using the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered. For
example, pow (10, 2) returns 100, but pow (10, -2) returns 0.01. For a negative base of type int
or f1oat and a non-integral exponent, a complex result is delivered. For example, pow (-9, 0.5) returns
a value close to 37.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero.
If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base,
-exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

20

Chapter 2. Built-in Functions

https://peps.python.org/pep-0475/

The Python Library Reference, Release 3.11.0

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 % 97 ==
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument
to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n', file=sys.stdout, flush="False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file, and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Whether the output is buffered is usually determined by file, but if the flush keyword argument is true, the
stream is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init__ (self):
self._x = None

def getx(self):
return self._x

def setx(self, wvalue):
self._x = value

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c . x will invoke the getter, c.x = value will invoke the setter, and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def init__ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

21

The Python Library Reference, Release 3.11.0

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained with
an example:

class C:
def _ init__ (self):
self._x = None

@property

def x(self):
"""I'm the 'x' property."""
return self._x

@x.setter
def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property object also has the attributes £get, £set, and £del corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range (stop, /)

class range (start, stop, step=1, /)

Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object, /)

Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval () ; otherwise,
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defining a __repr__ () method. If sys.displayhook () is not
accessible, this function will raise Runt imeError.

reversed (seq, /)

Return a reverse iterator. seq must be an object which has a __reversed__ () method or supports the se-
quence protocol (the __len__ () methodandthe___getitem__ () method with integer arguments starting
at 0).

round (number, ndigits=None)

Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0, and round (1.5) is 2). Any integer value is valid for
ndigits (positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise,
the return value has the same type as number.

For a general Python object number, round delegates to number._ round_ .

22

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t
be represented exactly as a float. See tut-fp-issues for more information.

class set
class set (iterable, /)

Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the col -
lections module.

setattr (object, name, value, /)

This is the counterpart of getattr (). The arguments are an object, a string, and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided
the object allows it. For example, setattr (x, 'foobar', 123) isequivalenttox.foobar = 123.

name need not be a Python identifier as defined in identifiers unless the object chooses to enforce that, for
example in a custom __getattribute__ () orvia __slots__. An attribute whose name is not an
identifier will not be accessible using the dot notation, but is accessible through getattr () etc..

Note: Since private name mangling happens at compilation time, one must manually mangle a private at-
tribute’s (attributes with two leading underscores) name in order to set it with setattr ().

class slice (stop, /)
class slice (start, stop, step=1, /)

Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop, and
step which merely return the argument values (or their default). They have no other explicit functionality;
however, they are used by NumPy and other third-party packages. Slice objects are also generated when
extended indexing syntax is used. For example: a [start:stop:step] ora[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, /, *, key=None, reverse=False)

Return a new sorted list from the items in iterable.
Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

The sort algorithm uses only < comparisons between items. While definingan ___1t__ () method will suffice
for sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when
using the same data with other ordering tools such as max () that rely on a different underlying method. Im-
plementing all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected
the __gt__ () method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

23

https://peps.python.org/pep-0008/

The Python Library Reference, Release 3.11.0

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.

A static method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()).
Moreover, they can be called as regular functions (such as £ ()).

Static methods in Python are similar to those found in Java or C++. Also, see c1assmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

def reqular_function() :

class C:
method = staticmethod(regular_function)

For more information on static methods, see types.

Changed in version 3.10: Static methods now inherit the method attributes (__module__, _ name__,
_ _qualname_ , __doc__and _ _annotations__), have a new __wrapped___ attribute, and are
now callable as regular functions.

class str (object=")

class str (object=b", encoding="utf-8', errors='strict’)

Return a st r version of object. See st r () for details.

Str.

str is the built-in string class. For general information about strings, see Text Sequence Type

sum (iterable, /, start=0)

Sums start and the items of an iterable from left to right and returns the total. The iferable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using itertools.chain ().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

class super

class super (type, object_or_type=None, /)

Return a proxy object that delegates method calls to a parent or sibling class of type. This is useful for accessing
inherited methods that have been overridden in a class.

The object_or_type determines the method resolution order to be searched. The search starts from the class
right after the rype.

For example, if __mro___ of object_or_typeisD -> B -> C —-> A —> object and the value of fype
is B, then super () searchesC -> A -> object.

The _ mro__ attribute of the object_or_type lists the method resolution search order used by both
getattr () and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is
updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type2,
type) must be true (this is useful for classmethods).

24

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.11.0

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that such implementations have the same calling signature in
every case (because the order of calls is determined at runtime, because that order adapts to changes in the
class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arqg) # This does the same thing as:
super (C, self).method(arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple

class tuple (iterable, /)
Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples and
Sequence Types — list, tuple, range.

class type (object, /)

class type (name, bases, dict, /, **kwds)
With one argument, return the type of an object. The return value is a type object and generally the same object

as returned by object.__ _class__ .

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the ___name___ attribute. The bases tuple contains the base
classes and becomes the __bases___ attribute; if empty, ob ject, the ultimate base of all classes, is added.
The dict dictionary contains attribute and method definitions for the class body; it may be copied or wrapped
before becoming the __dict__ attribute. The following two statements create identical t ype objects:

>>> class X:
a =1

>>> X = type('X', (), dict(a=1))

See also Type Objects.

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery
(usually __init_subclass__ ()) in the same way that keywords in a class definition (besides metaclass)
would.

See also class-customization.

25

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.11.0

Changed in version 3.6: Subclasses of type which don’t override type.__new___ may no longer use the
one-argument form to get the type of an object.

vars ()

vars (object, /)

Returnthe dict__ attribute for a module, class, instance, or any other object witha ___ dict___ attribute.

Objects such as modules and instances have an updateable __ dict__ attribute; however, other ob-
jects may have write restrictions on their __ dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

Without an argument, vars () acts like Jocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

A TypeError exception is raised if an object is specified but it doesn’t have a ___dict___ attribute (for
example, if its class defines the ___slots___ attribute).

zip (*iterables, strict=False)

Iterate over several iterables in parallel, producing tuples with an item from each one.

Example:

>>> for item in zip([1, 2, 3], ['sugar', 'spice', 'everything nice']):
print (item)

(1, 'sugar')
(2, 'spice')
(3, 'everything nice')

More formally: zip () returns an iterator of tuples, where the i-th tuple contains the i-th element from each
of the argument iterables.

Another way to think of zip () is that it turns rows into columns, and columns into rows. This is similar to
transposing a matrix.
zip () is lazy: The elements won’t be processed until the iterable is iterated on, e.g. by a for loop or by
wrapping ina 11ist.

One thing to consider is that the iterables passed to zip () could have different lengths; sometimes by de-
sign, and sometimes because of a bug in the code that prepared these iterables. Python offers three different
approaches to dealing with this issue:

e By default, zip () stops when the shortest iterable is exhausted. It will ignore the remaining items in the
longer iterables, cutting off the result to the length of the shortest iterable:

>>> list(zip(range(3), ['fee', 'fi', 'fo', 'fum']))
[(0, '"fee'), (1, 'fi'), (2, '"fo')]

e zip () is often used in cases where the iterables are assumed to be of equal length. In such cases, it’s
recommended to use the st rict=True option. Its output is the same as regular zip ():

>>> list(zip(('a', 'b', 'c"), (1, 2, 3), strict=True))
((ta', 1), ("', 2), ('c', 3)]

Unlike the default behavior, it checks that the lengths of iterables are identical, raising a ValueError
if they aren’t:

>>> list (zip(range(3), ['fee', 'fi', 'fo', '"fum'], strict=True))
Traceback (most recent call last):

ValueError: zip() argument 2 is longer than argument 1

Without the st rict=True argument, any bug that results in iterables of different lengths will be si-
lenced, possibly manifesting as a hard-to-find bug in another part of the program.

26

Chapter 2. Built-in Functions

https://en.wikipedia.org/wiki/Transpose

The Python Library Reference, Release 3.11.0

« Shorter iterables can be padded with a constant value to make all the iterables have the same length. This
isdone by itertools.zip_longest ().

Edge cases: With a single iterable argument, zip () returns an iterator of 1-tuples. With no arguments, it
returns an empty iterator.

Tips and tricks:

¢ The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for cluster-
ing a data series into n-length groups using zip (* [iter (s)]*n, strict=True). This repeats
the same iterator n times so that each output tuple has the result of n calls to the iterator. This has the
effect of dividing the input into n-length chunks.

* zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> list (zip(x, Vy))

[(1, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, Vy))

>>> x == list(x2) and y == list (y2)
True

Changed in version 3.10: Added the st rict argument.

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike import1ib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same
goals and does not cause issues with code which assumes the default import implementation is in use. Direct
use of ___import__ () is also discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at all
and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. 0 (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up till
the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument is
given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __import__ ('spam', globals(), locals(), [], 0)

The statement import spam.ham results in this call:

spam = __import__ ('spam.ham', globals(), locals(), [], 0)

Note how ___import___ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

27

https://peps.python.org/pep-0302/
https://peps.python.org/pep-0328/

The Python Library Reference, Release 3.11.0

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam. ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

Changed in version 3.9: When the command line options —E or —I are being used, the environment variable
PYTHONCASEOK is now ignored.

28 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False

The false value of the bool type. Assignments to False are illegal and raise a SyntaxError.

True

The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None

An object frequently used to represent the absence of a value, as when default arguments are not passed to
a function. Assignments to None are illegal and raise a SyntaxError. None is the sole instance of the
NoneType type.

NotImplemented

A special value which should be returned by the binary special methods (e.g. __eqg (), __1t__ (),
__add__ () rsub__ (), etc.) to indicate that the operation is not implemented with respect to the
other type; may be returned by the in-place binary special methods (e.g. __imul__ (),__iand__ (),etc.)
for the same purpose. It should not be evaluated in a boolean context. Not Implemented is the sole instance
of the t ypes. Not ImplementedType type.

[J—

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the reflected
operation on the other type (or some other fallback, depending on the operator). If all attempts return Not Im—
plemented, the interpreter will raise an appropriate exception. Incorrectly returning Not Implemented
will result in a misleading error message or the Not Implemented value being returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and NotImplemented are notinterchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.
Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types. E11ipsis is the sole instance of the t ypes.E11ipsisType type.
__debug__
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

29

The Python Library Reference, Release 3.11.0

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.
quit (code=None)
exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called, raise
SystemEx 1t with the specified exit code.
copyright
credits

Objects that when printed or called, print the text of copyright or credits, respectively.

license

Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

30 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for
equality, tested for truth value, and converted to a string (with the repr () function or the slightly different st r ()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i £ or while condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a __bool__ () method that returns False
ora___len__ () method that returns zero, when called with the object.' Here are most of the built-in objects
considered false:

¢ constants defined to be false: None and False.
e zero of any numeric type: 0, 0.0, 0J, Decimal (0),Fraction (0, 1)
e empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is false, then y, else x (€))
x and y | if x1is false, then x, else y 2)
not x if x is false, then True, else False | (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

31

The Python Library Reference, Release 3.11.0

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b is a syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= zisequivalenttox < y
and y <= z,except that y is evaluated only once (but in both cases z is not evaluated at all when x < y is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined
but for some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only
defined where they make sense; for example, they raise a TypeError exception when one of the arguments is a
complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq___ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__(),and __ge__ () (in general,
__1t__ () and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and 1s not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: integers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys. f1oat_ info. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z . imag. (The standard library includes the additional numeric types fractions.Fraction, for rationals, and
decimal.Decimal, for floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ' j ' or ' J' to a numeric literal yields an imaginary number (a complex
number with a zero real part) which you can add to an integer or float to get a complex number with real and imaginary
parts.

32 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.”

The constructors int (), float (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-

summary):
Operation Result Notes| Full documen-
tation
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y @))
X %y remainder of x / vy 2)
-x X negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6) | int ()
float (x) x converted to floating point @)(6) | float ()
complex (re, a complex number with real part re, imaginary part im. im | (6) complex ()
im) defaults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % V) 2) divmod ()
pow (X, V) X to the power y (@) pow ()
X ** y X to the power y (®)]
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (=1) //21is-1,1// (-2)

is-1,and (-1)

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

// (=2) is 0.

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. f1oor () and
math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0,

0) and 0 ** 0 tobe 1, as is common for programming languages.

(6) The numeric literals accepted include the digits O to 9 or any Unicode equivalent (code points with the Nd

property).

See https://www.unicode.org/Public/14.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of
code points with the Nd property.

All numbers.Real types (int and f1oat) also include the following operations:

Operation

Result

math.trunc (x)

x truncated to Tntegral

round (x/[,

nj)

x rounded to n digits, rounding half to even. If # is omitted, it defaults to O.

math.floor (x)

the greatest Tntegral <=x

math.ceil (x)

the least Tntegral >=x

2 Asa consequence, the list [1,

2] is considered equal to [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex

33

https://www.unicode.org/Public/14.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.11.0

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types
Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Operation | Result Notes
X |y bitwise or of x and y “)

x Ny bitwise exclusive or of x and y | (4)

X & Yy bitwise and of x and y 4

x << n x shifted left by n bits (H(©2)
X >> n x shifted right by 7 bits (H(A3)
~X the bits of x inverted

Notes:
(1) Negative shift counts are illegal and cause a ValueError to be raised.
(2) A left shift by n bits is equivalent to multiplication by pow (2, n).
(3) A right shift by » bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representa-
tion (a working bit-width of 1 + max (x.bit_length(), y.bit_length()) or more) is sufficient
to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types
The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = -37

>>> bin (n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, thenx .bit_length () isthe unique positive integer k such that 2 ** (k—1)
<= abs(x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly rounded logarithm,
thenk = 1 + int (log(abs(x), 2)).If xiszero,then x.bit_length () returns O.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) —--> '-0b100101"'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101'") —-—> 6

New in version 3.1.

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

int.bit_count ()

Return the number of ones in the binary representation of the absolute value of the integer. This is also known
as the population count. Example:

>> n = 19

>>> pbin (n)

'0b10011"

>>> n.bit_count ()

3

>>> (—-n) .bit_count ()
3

Equivalent to:

def bit_count (self):
return bin(self) .count ("1")

New in version 3.10.

int.to_bytes (length=1, byteorder="big', *, signed=False)
Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"'

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

b \XfA\XEA\XFA\XEE\XEF\XEE\XEE\xEff\xfc\x00"'

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes, and defaults to 1. An OverflowError is raised if the integer
is not representable with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byteorderis "1ittle™",
the most significant byte is at the end of the byte array.

The signed argument determines whether two’s complement is used to represent the integer. If signed isFalse
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

The default values can be used to conveniently turn an integer into a single byte object. However, when using
the default arguments, don’t try to convert a value greater than 255 or you'll get an OverflowError:

>>> (65) .to_bytes()
b'A'

Equivalent to:

def to_bytes(n, length=1, byteorder='big', signed=False):
if byteorder == 'little':
order = range (length)
elif byteorder == 'big':
order = reversed(range (length))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

return bytes((n >> i1i*8) & 0xff for i in order)

New in version 3.2.

Changed in version 3.11: Added default argument values for length and byteorder.

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.11.0

classmethod int.from_bytes (bytes, byteorder="big’, *, signed=False)

Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big'")

16711680

The argument bytes must either be a byfes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer, and defaults to "big". If
byteorder is "big", the most significant byte is at the beginning of the byte array. If byteorderis "1ittle",
the most significant byte is at the end of the byte array. To request the native byte order of the host system, use
sys.byteorder as the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

Equivalent to:

def from_bytes (bytes, byteorder='big', signed=False) :
if byteorder == 'little':
little_ordered = list (bytes)
elif byteorder == 'big':
little_ordered = list (reversed(bytes))
else:
raise ValueError ("byteorder must be either 'little' or 'big'")

n = sum(b << 1*8 for i, b in enumerate (little_ordered))

if signed and little_ordered and (little_ordered[-1] & 0x80):
n —= 1 << 8*len(little_ordered)

return n

New in version 3.2.
Changed in version 3.11: Added default argument value for byteorder.

int.as_integer_ratio ()
Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator.
The integer ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

New in version 3.8.

4.4.3 Additional Methods on Float

The float type implements the numbers. Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()

Return True if the float instance is finite with integral value, and False otherwise:

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

>>> (-2.0).is_integer()
True

>>> (3.2) .1is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float.hex ()

Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading 0x and a trailing p and exponent.

classmethod float.fromhex (s)

Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat . hex () is an instance method, while f1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x"'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1loat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3 . a7p10 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex(3740.0)
'0x1.d380000000000p+11"

4.4.4 Hashing of numeric types

For numbers x and vy, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (seethe _ _hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of float and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 on machines with 32-bit C longs
andP = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / nisanonnegative rational number and n is not divisible by P, define hash (x) asm *
invmod (n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

4.4. Numeric Types — int, float, complex 37

The Python Library Reference, Release 3.11.0

If x = m / nisa nonnegative rational number and n is divisible by P (but m is not) then n has no
inverse modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value
sys.hash_info.inf.

If x = m / nisanegative rational number define hash (x) as ~hash (—x) . If the resulting hash is -1,
replace it with —2.

The particular values sys.hash_info.inf and —sys.hash_info.inf are used as hash values for
positive infinity or negative infinity (respectively).

For a complex number z, the hash values of the real and imaginary parts are combined by comput-
ing hash(z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so thatitlies in range (-2** (sys.hash_info.width - 1), 2**(sys.
hash_info.width — 1)). Again, if the result is —1, it’s replaced with —-2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, f1oat, or complex:

import sys, math

def

def

def

hash_fraction(m, n):
"""Compute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

men

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
whilem $ P == n % == 0:
m,n=m// P, n//P
if n % P ==
hash_value = sys.hash_info.inf
else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = -hash_value
if hash_value == -1:

hash_value = -2

return hash_value

hash_float (x) :
"""Compute the hash of a float x."""

if math.isnan (x):

return object.__hash__ (x)
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

hash_complex(z) :
"""Compute the hash of a complex number z."""

hash_value = hash_float (z.real) + sys.hash_info.imag * hash_float (z.imaqg)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

4.5 Iterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iterable support:

container.__iter__ ()

Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()

Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL.

iterator.__next__ ()

Return the next item from the iferator. If there are no further items, raise the St opIterat ion exception.
This method corresponds to the t p_iternext slot of the type structure for Python objects in the Python/C
APIL

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next___ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter_ () and __next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for processing
of binary data and fext strings are described in dedicated sections.

4.5. Iterator Types 39

The Python Library Reference, Release 3.11.0

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and
* (repetition) operations have the same priority as the corresponding numeric operations.”

Operation Result Notes
X in s True if an item of s is equal to x, else False @))]

X not in s False if an item of s is equal to x, else True €))]

s + t the concatenation of s and ¢ 6)(7)
s * norn * s equivalent to adding s to itself n times 2)(7)
s[i] ith item of s, origin 0 3)
s[i:7] slice of s from i to j 3)4)
s[i:j:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, i[, | index of the first occurrence of x in s (at or after index i and before index | (8)
J11) 5

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Forward and reversed iterators over mutable sequences access values using an index. That index will continue to
march forward (or backward) even if the underlying sequence is mutated. The iterator terminates only when an
IndexErrorora StopIteration is encountered (or when the index drops below zero).

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llqg" ln "qusﬂ
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

>>> lists =
>>> lists
(e, 1, (11

>>> lists[0].append(3)
>>> lists
[[31, [31,

(11 = 3

[31]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of 11 st s modifies this single list.
You can create a list of different lists this way:

3 They must have since the parser can’t tell the type of the operands.

40 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

>>> lists [[] for i in range(3)]

>>> lists[0].append(3)
>>> lists[1].append(5)
>>> lists[2].append(7)
>>> lists

(031, (51, [71]

Further explanation is available in the FAQ entry fag-multidimensional-list.

(3) Ifior jisnegative, the index is relative to the end of sequence s: 1en (s) + iorlen(s) + jissubstituted.
But note that -0 is still 0.

(4) The slice of s from i to j is defined as the sequence of items with index k such that i <= k < j.Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s). If
i is greater than or equal to j, the slice is empty.

(5) The slice of s from i to j with step k is defined as the sequence of items withindex x = i + n*k such that 0
<= n < (j-1)/k. In other words, the indices are i, 1+k, i+2*k, i+3*k and so on, stopping when j is
reached (but never including j). When £ is positive, i and j are reduced to Len (s) if they are greater. When

k is negative, i and j are reduced to 1len (s) — 1 if they are greater. If i or j are omitted or None, they
become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is treated
like 1.

(6) Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

* if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

« if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO,or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

* if concatenating t uple objects, extend a 1 i st instead
« for other types, investigate the relevant class documentation

(7) Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

(8) indexraises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s [i: 3] .index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

4.6.2 Immutable Sequence Types
The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up e instances, to be used as di ct keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.11.0

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types.

The collections.abc.

MutableSequence ABCis provided to make it easier to correctly implement these operations on custom sequence

types.

In the table s is an instance of a mutable sequence type, ¢ is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value

restriction 0 <= x <= 255).
Operation Result Notes
s[i] = x item i of s is replaced by x
s[i:3] = t slice of s from i to j is replaced by the contents of the iterable ¢
del s[i:7j] sameas s[i:3] = []
s[i:j:k] =t the elements of s [1:j:k] are replaced by those of ¢ (D
del s[i:j:k] removes the elements of s [1:3j:k] from the list
s.append (x) appends x to the end of the sequence (same as s [len (s) :len(s)] =

[x])

s.clear () removes all items from s (same as del s[:]) 5)
s.copy () creates a shallow copy of s (same as s[:]) (@)
s.extend (t) or s | extends s with the contents of ¢ (for the most part the same as
+= t s[len(s):len(s)] = t)
s *=n updates s with its contents repeated n times (6)
s.insert (i, x) inserts x into s at the index given by i (same as s [1:1] = [x])
s.pop () or s. | retrieves the item at i and also removes it from s 2)
pop (1)
s.remove (x) remove the first item from s where s [1] is equal to x 3)
s.reverse () reverses the items of s in place 4)

Notes:

(1) r must have the same length as the slice it is replacing.

(2) The optional argument i defaults to -1, so that by default the last item is removed and returned.

(3) remove () raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large se-
quence. To remind users that it operates by side effect, it does not return the reversed sequence.

&)

clear () and copy () are included for consistency with the interfaces of mutable containers that don’t

support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

New in version 3.3: clear () and copy () methods.

(6)

The value 7 is an integer, or an object implementing ___index___ (). Zero and negative values of n clear the

sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

42

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).
class list ([itemble])

Lists may be constructed in several ways:
» Using a pair of square brackets to denote the empty list: []
» Using square brackets, separating items with commas: [a], [a, b, c]
* Using a list comprehension: [x for x in iterable]
» Using the type constructor: 1ist () or 1ist (iterable)

The constructor builds a list whose items are the same and in the same order as iferable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similarto iterable[:]. Forexample, 1ist ('abc"') returns ['a', 'b', 'c']
and 1ist ((1, 2, 3)) returns [1, 2, 3].If noargument is given, the constructor creates a new
empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)

This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

4.6. Sequence Types — list, tuple, range 43

The Python Library Reference, Release 3.11.0

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([itemble])
Tuples may be constructed in a number of ways:

» Using a pair of parentheses to denote the empty tuple: ()

 Using a trailing comma for a singleton tuple: a, or (a,)

¢ Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iterable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') and tuple([1, 2,
3]) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, f (a, b,
c) is a function call with three arguments, while £ ((a, b, c)) isa function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.
class range (stop)

class range (start, stop[, step])

The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index__ () special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1] = start + step*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formular [1] = start + step*i,
but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ())may raise OverflowError.

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[o, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

(continues on next page)

44 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

[0, 3, 6, 9]

>>> list (range (0, -10, -1))

o, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation will
usually violate that pattern).

start

The value of the start parameter (or 0 if the parameter was not supplied)

stop

The value of the sfop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)
The advantage of the range type over a regular 1ist or tuple is thata range object will always take the same

(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> 1

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range (2, 1, 3) or
range (0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘!="to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

 The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

4.6. Sequence Types — list, tuple, range 45

https://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.11.0

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

¢ Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes"
e Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
strings, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")
class str (object=b", encoding="utf-8', errors='strict’)

Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns type (object) .__str__ (object),
which is the “informal” or nicely printable string representation of object. For string objects, this is the string
itself. If object does not have a __str__ () method, then st r () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytes or bytearray).
In this case, if object is a bytes (or bytearray) object, then str (bytes, encoding, errors)
is equivalent to bytes.decode (encoding, errors). Otherwise, the bytes object underlying the
buffer object is obtained before calling bytes. decode (). See Binary Sequence Types — bytes, bytearray,
memoryview and bufferobjects for information on buffer objects.

Passing a bytes object to str () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the ~b command-line option to Python). For example:

>>> str(b'Zoot!")
"blzoot! ™rn

For more information on the st r class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

46 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).
str.capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.
Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that
characters like digraphs will only have their first letter capitalized, instead of the full character.
str.casefold ()
Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.
Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions

in a string. For example, the German lowercase letter '3 ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to 'R '; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

str.center (width[, fillchar])

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1en (s).

str.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

str.encode (encoding="utf-8', errors='strict")

Return an encoded version of the string as a bytes object. Default encoding is 'ut£-8"'. errors may be
given to set a different error handling scheme. The default for errors is ' strict ', meaning that encoding
errors raise a UnicodeError. Other possible values are ' ignore', 'replace', 'xmlcharrefre-
place', 'backslashreplace' and any other name registered via codecs. register_error (),
see section Error Handlers. For a list of possible encodings, see section Standard Encodings.

By default, the errors argument is not checked for best performances, but only used at the first encoding error.
Enable the Python Development Mode, or use a debug build to check errors.

Changed in version 3.1: Support for keyword arguments added.
Changed in version 3.9: The errors is now checked in development mode and in debug mode.

str.endswith (suﬁix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (tabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\ r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.11.0

>>> '01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

str.£find (sub[, start[, end]])

Return the lowest index in the string where substring sub is found within the slice s [start : end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is " format (1+2)
'The sum of 1 + 2 is 3'

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with
the n type (ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the
LC_NUMERIC locale to decode decimal_point and thousands_sep fields of localeconv () if
they are non-ASCII or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE
locale. This temporary change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping)

Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict.
This is useful if for example mapping is a dict subclass:

>>> class Default (dict):
def _ missing__(self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido"))
'Guido was born in country'

New in version 3.2.

str.index (sub[, start[, end]])

Like find (), but raise ValueError when the substring is not found.

str.isalnum ()

Return True if all characters in the string are alphanumeric and there is at least one character, False
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.
isdecimal (), c.isdigit (),or c.isnumeric().

48

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

str

str.

str.

str.

str.

str.

str.

str.

str.

.isalpha ()

Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from
the “Alphabetic” property defined in the Unicode Standard.

isascii ()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII char-
acters have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility superscript
digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.
isidentifier ()

Return True if the string is a valid identifier according to the language definition, section identifiers.
Call keyword. iskeyword () to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello'")
(True, False)

>>> 'def'.isidentifier (), iskeyword('def')
(True, True)

islower ()

Return True if all cased characters® in the string are lowercase and there is at least one cased character,
False otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repzr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout or sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.11.0

str

str.

str.

str

str.

str

.istitle()

Return True if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return False
otherwise.

isupper ()
Return True if all cased characters’e 4% 4

False otherwise.

in the string are uppercase and there is at least one cased character,

>>> 'BANANA'.isupper ()
True

>>> 'banana'.isupper /()
False

>>> 'baNana'.isupper ()
False

>>> ' ' isupper ()
False

join (iterable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there
are any non-string values in iterable, including byt es objects. The separator between elements is the string
providing this method.

.1ljust (width[,ﬁllchar])

Return the string left justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1len (s) .

lower ()

Page 49, 4

Return a copy of the string with all the cased characters converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

.1lstrip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious " 1lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

See str.removeprefix () for a method that will remove a single prefix string rather than all of a set of
characters. For example:

>>> 'Arthur: three!'.lstrip('Arthur: ')

'eel!
>>> 'Arthur: three!'.removeprefix ('Arthur: ")
'three!'

static str.maketrans (x[, y[, Z]])

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

50

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

str

str.

str.

str.

str.

str.

str

str

str.

str

.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

removeprefix (prefix, /)

If the string starts with the prefix string, return string[len (prefix) :]. Otherwise, return a copy of the
original string:

>>> 'TestHook'.removeprefix ('Test')
'Hook'

>>> 'BaseTestCase'.removeprefix('Test"')
'BaseTestCase’

New in version 3.9.

removesuffix (suffix, /)

If the string ends with the suffix string and that suffix is not empty, return string[:-1len (suffix)].
Otherwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix('Tests')
'Misc'

>>> "TmpDirMixin'.removesuffix ('Tests')
'TmpDirMixin'

New in version 3.9.

replace (old, new[, count])

Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

rindex (sub[, start[, end]])
Like rfind () butraises ValueError when the substring sub is not found.

.rjust (width[,ﬁllchar])

Return the string right justified in a string of length widrh. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s) .

.rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit (sep=None, maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

.rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious !

.rstrip()
spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ'

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.11.0

str.

str.

See str.removesuffix () for a method that will remove a single suffix string rather than all of a set of
characters. For example:

>>> 'Monty Python'.rstrip(' Python')

lMl
>>> 'Monty Python'.removesuffix (' Python')
'Monty'

split (sep=None, maxsplit=- 1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1', '', '2']). The sep argument may consist of multiple
characters (for example, ' 1<>2<>3"'.split ('<>"') returns ['1', '2', '3']). Splitting an empty
string with a specified separator returns [' '].

For example:

>>> '1,2,3".split (', ")

rrav, '2', '3']

>>> '1,2,3".split (', "', maxsplit=1)
[v1y, '2,3']

>>> '1,2,,3,"'.split (', ")

rrav, 2, v, '3', ']

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> '1 2 3'.split ()
['1" '2" '3':|
>>> '1 2 3'.split (maxsplit=1)

[lll, 12 3!}
>>> ! 1 2 3 '.split ()
[lll, 121’ '3']

splitlines (keepends=False)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation

\f or \x0c Form Feed

\xlc File Separator

\x1d Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

52

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

Changed in version 3.2: \'v and \ f added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab ¢', ''", 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '"\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" _splitlines{()

[]

>>> "One line\n".splitlines/()
['One line']

For comparison, split ('\n"') gives:

>>> "' . split ('\n")

['"]

>>> 'Two lines\n'.split('\n'")
["Two lines', '']

str.startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

str.strip([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip ('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is not
necessarily true that s . swapcase () . swapcase () == s.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title ()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

4.7. Text Sequence Type — str 53

The Python Library Reference, Release 3.11.0

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

The string.capwords () function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za—-z]+)?",
lambda mo: mo.group(0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)

Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via __getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in dif-
ferent formats.

See also the codecss module for a more flexible approach to custom character mappings.

str.upper ()

Return a copy of the string with all the cased characters™*** converted to uppercase. Note that s.

upper () .isupper () might be False if s contains uncased characters or if the Unicode category of
the resulting character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£fill (width)

Return a copy of the string left filled with ASCII ' 0" digits to make a string of length width. A leading sign
prefix ("+'/'-") is handled by inserting the padding affer the sign character rather than before. The original
string is returned if width is less than or equal to 1en (s).

For example:

>>> "42" z£i11(5)
'00042"
>>> "—42" zfill (5)
'-0042"

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r.
format () interface, or template strings may help avoid these errors. Each of these alternatives provides their own
trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), % conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C

language.

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

If format requires a single argument, values may be a single non-tuple object.’ Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%"' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified asan ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as '*' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (' has quote types.' %
{'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

"#' | The value conversion will use the “alternate form” (where defined below).

'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' O ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asigncharacter ('+' or '-"') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python —so e.g. $1d is identical
to sd.

The conversion types are:

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 55

The Python Library Reference, Release 3.11.0

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (€))]

'u! Obsolete type — it is identical to 'd'. (6)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single character (accepts integer or single character string).

'r' String (converts any Python object using repr ()). (@)

's! String (converts any Python object using stz ()). 5)

'a' String (converts any Python object using ascii ()). ®)

'y No argument is converted, results ina ' %' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X"' (depending on whether the 'x ' or 'X"' format was used)

3)

to be inserted before the first digit.
The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as

&)
(6)

Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

If precision is N, the output is truncated to N characters.

See PEP 237.

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by mem—
oryview which uses the buffer protocol to access the memory of other binary objects without needing to make a

copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

56

Chapter 4. Built-in Types

https://peps.python.org/pep-0237/

The Python Library Reference, Release 3.11.0

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes([source[, encoding[, ermrs]]])

Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:
» Single quotes: b'still allows embedded "double" quotes'
* Double quotes: b"still allows embedded 'single' quotes"
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to violate
this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
* A zero-filled bytes object of a specified length: bytes (10)
* From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob7j)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)

This byt es class method returns a bytes object, decoding the given string object. The string must contain
two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' A\xfO\xfl1\xf2'

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\x£f0\x£f1\x£f2' .hex ()
'fOfl1f2"

If you want to make the hex string easier to read, you can specify a single character separator sep parameter
to include in the output. By default, this separator will be included between each byte. A second optional
bytes_per_sep parameter controls the spacing. Positive values calculate the separator position from the
right, negative values from the left.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.11.0

>>> value = b'\xf0\x£f1l\x£f2'
>>> value.hex ('-")

'fO0-f1-£f2"

>>> value.hex('_', 2)
'fO_f1f2"

>>> D'UUDDLRLRAB'.hex (' ', -4)

'55554444 4c524c52 4142"

New in version 3.5.

Changed in version 3.8: bytes.hex () now supports optional sep and bytes_per_sep parameters to
insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'..."') since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to bytes objects.

class bytearray ([source[, encoding[, errors]]])

There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

» Creating an empty instance: bytearray ()

* Creating a zero-filled instance with a given length: bytearray (10)

¢ From an iterable of integers: bytearray (range (20))

¢ Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex (string)

This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1f2 ")
bytearray (b' . \xf0\xf1\xf2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not
just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ([sep[, bytes, _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2') .hex ()
'fOf1£2"

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b' ... ")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). Youcan always convert a bytearray object into a list of integers
using 1ist (b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"

b = a.replace("a", "f")
and:

a = b"abc"

b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format
may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.
bytes.count (sub[, start[, end]])

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.
The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.removeprefix (prefix, /)
bytearray.removeprefix (prefix, /)

If the binary data starts with the prefix string, return bytes [len (prefix) :]. Otherwise, return a copy
of the original binary data:

>>> b'TestHook'.removeprefix (b'Test')
b'Hook'

>>> pb'BaseTestCase'.removeprefix (b'Test"')
b'BaseTestCase'

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.11.0

The prefix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

New in version 3.9.

bytes.removesuffix (suffix, /)
bytearray.removesuffix (suffix, /)

If the binary data ends with the suffix string and that suffix is not empty, return bytes [:-len (suffix)].
Otherwise, return a copy of the original binary data:

>>> b'MiscTests'.removesuffix(b'Tests")
b'Misc'

>>> pb'TmpDirMixin'.removesuffix (b'Tests"')
b'TmpDirMixin'

The suffix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

New in version 3.9.

bytes.decode (encoding=utf-8', errors='strict’)
bytearray.decode (encoding='utf-8', errors='strict")

Return a string decoded from the given bytes. Default encoding is 'ut £-8"'. errors may be given to set a
different error handling scheme. The default for errors is ' strict ', meaning that encoding errors raise a
UnicodeError. Other possible values are 'ignore', 'replace' and any other name registered via
codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section
Standard Encodings.

By default, the errors argument is not checked for best performances, but only used at the first decoding error.
Enable the Python Development Mode, or use a debug build to check errors.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing
to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

Changed in version 3.9: The errors is now checked in development mode and in debug mode.
bytes.endswith (suﬁix[, start[, end]])
bytearray.endswith (suﬁix[, start[, end]])

Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be
a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The suffix(es) to search for may be any byzes-like object.
bytes.find (sub[, start[, end]])
bytearray.find (sub[, start[, end]])

Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 if sub is
not found.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

60 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

Note: The £ind () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> b'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.
bytes.index (sub[, start[, end]])

bytearray.index (sub[, slart[, end]])

Like find (), butraise ValueError when the subsequence is not found.
The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeError will be raised if there are any values in iferable that are not bytes-like objects, including st r
objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, t0)

This static method returns a translation table usable for bytes. translate () that will map each character
in from into the character at the same position in fo; from and to must both be bytes-like objects and have the
same length.

New in version 3.1.
bytes.partition (sep)
bytearray.partition (sep)

Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.
bytes.replace (old, new[, count])

bytearray.replace (old, new[, count])

Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rfind (sub[, start[, end]])
bytearray.rfind (sub[, start[, end]])

Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range O to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex (sub[, start[, end]])

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.11.0

bytearray.rindex (sub[, start[, end]])

Like rfind () but raises ValueError when the subsequence sub is not found.
The subsequence to search for may be any bytes-like object or an integer in the range O to 255.

Changed in version 3.3: Also accept an integer in the range O to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)

Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])

Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, /, delete=b")
bytearray.translate (table, /, delete=b")

Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the fable argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII com-
patible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that
all of the bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width[,ﬁllbyte])

bytearray.center (width[, ﬁllbyte])

Return a copy of the object centered in a sequence of length width. Padding is done using the specified fillbyte
(default is an ASCII space). For bytes objects, the original sequence is returned if width is less than or equal
tolen(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.1ljust (widh, fillbyte |)
bytearray.ljust (width[, ﬁllbyte])

Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than
or equal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

62

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

bytes.lstrip([chars])
bytearray.lstrip([chars])

Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> b spacious ".lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object. See removeprefix () for a
method that will remove a single prefix string rather than all of a set of characters. For example:

>>> b'Arthur: three!'.lstrip(b'Arthur: ')
b'ee!!

>>> b'Arthur: three!'.removeprefix(b'Arthur: ")
b'three!’

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rjust (width[,ﬁllbyte])
bytearray.rjust (width[, ﬁllbyte])

Return a copy of the object right justified in a sequence of length widrh. Padding is done using the specified
fillbyte (default is an ASCII space). For bytes objects, the original sequence is returned if width is less than
orequal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rsplit (sep=None, maxsplit=- 1)

bytearray.rsplit (sep=None, maxsplit=- 1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rspl1it () behaves
like sp1it () which is described in detail below.

bytes.rstrip ([chars])

bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()

b' spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object. See removesuffix () fora
method that will remove a single suffix string rather than all of a set of characters. For example:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.11.0

>>> b'Monty Python'.rstrip(b' Python')

b'Ml

>>> p'Monty Python'.removesuffix(b' Python')
b'Monty'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.split (sep=None, maxsplit=- 1)

bytearray.split (sep=None, maxsplit=- 1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit
is given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits
are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example,b'1, ,2"' .split (b', ") returns [b'1', b'', b'2"']). The sep argument may consist
of a multibyte sequence (for example, b'1<>2<>3"' .split (b'<>") returns [b'1', b'2', b'3']).
Splitting an empty sequence with a specified separator returns [b' '] or [bytearray (b'"')] depending
on the type of object being split. The sep argument may be any byzes-like object.

For example:

>>> p'1,2,3".split(b',")

[b'1l', b'2', b'3"']

>>> pb'1,2,3".split(b', "', maxsplit=1)
[b'1l', b'2,3"']

>>> pb'1,2,,3,".split(b', ")

[b'1', b'2', b'"', b'3', b'"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whites-
pace are regarded as a single separator, and the result will contain no empty strings at the start or end if the
sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consist-
ing solely of ASCII whitespace without a specified separator returns [].

For example:

>>> p'l 2 3'.split ()

[b'1', b'2', b'3"]

>>> pb'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b 1 2 3 '.split ()
[b'1', b'2', b'3"]

bytes.strip ([chars])

bytearray.strip([chars])

Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a binary
sequence specifying the set of byte values to be removed - the name refers to the fact this method is usually
used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace.
The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any bytes-like object.

64

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize ()

bytearray.capitalize ()

Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.expandtabs (fabsize=8)
bytearray.expandtabs (tabsize=8)

Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every fabsize bytes (default is 8,
giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to zero
and the sequence is examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more space
characters are inserted in the result until the current column is equal to the next tab position. (The tab character
itself is not copied.) If the current byte is an ASCII newline (b ' \n ") or carriage return (b ' \r '), it is copied
and the current column is reset to zero. Any other byte value is copied unchanged and the current column is
incremented by one regardless of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234"'.expandtabs ()

b'ol 012 0123 01234"
>>> p'0I\t012\t0123\t01234"'.expandtabs (4)
b'0l1 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.isalnum ()
bytearray.isalnum/()

Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and the
sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal
digits are those byte values in the sequence b' 0123456789

For example:

>>> b'ABCabcl'.isalnum()
True
>>> Pb'ABC abcl'.isalnum/()
False

bytes.isalpha ()
bytearray.isalpha/()

Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'.

For example:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.11.0

>>> pb'ABCabc'.isalpha()
True
>>> p'ABCabcl'.isalpha ()
False

bytes.isascii ()
bytearray.isascii ()

Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes
are in the range 0-0x7F.

New in version 3.7.
bytes.isdigit ()
bytearray.isdigit ()

Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False
otherwise. ASCII decimal digits are those byte values in the sequence b' 0123456789,

For example:

>>> p'1234" .isdigit ()
True
>>> pb'1.23"'.isdigit ()
False

bytes.islower ()
bytearray.islower ()

Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, False otherwise.

For example:

>>> b'hello world'.islower ()

True

>>> b'Hello world'.islower ()

False

Lowercase ASCII characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.isspace ()
bytearray.isspace ()

Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False other-
wise. ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f' (space, tab,
newline, carriage return, vertical tab, form feed).

bytes.istitle()
bytearray.istitle ()

Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle()
True

>>> pb'Hello world'.istitle()
False

bytes.isupper ()

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

bytearray.isupper ()

Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, False otherwise.

For example:

>>> Db'HELLO WORLD'.isupper ()

True

>>> p'Hello world'.isupper ()

False

Lowercase ASCIL characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.lower ()

bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding low-
ercase counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.splitlines (keepends=False)
bytearray.splitlines (keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab ¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split(b'\n")
([""], [b'Two lines', b''])

>>> b"" . splitlines (), b"One line\n".splitlines ()
([]1, [b'One line'])

bytes.swapcase ()

bytearray.swapcase ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart and vice-versa.

For example:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

The Python Library Reference, Release 3.11.0

>>> p'Hello World'.swapcase ()
b'hELLO wORLD'

Lowercase ASCIL characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Unlike st r. swapcase (), itis always the case that bin. swapcase () . swapcase () == bin forthe
binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for arbitrary
Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.title()
bytearray.title()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> b"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)2",
lambda mo: mo.group (0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.upper ()

bytearray.upper ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart.

For example:

68

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

>>> pb'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCIL characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.z£ill (width)
bytearray.z£ill (width)

Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length width. A leading
sign prefix (b'+'/b'~-") is handled by inserting the padding after the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to len (seq) .

For example:

>>> p"42" . zfill (5)
b'o0042"
>>> p"-42" z£fill (5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

4.8.4 print£-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary,
wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), % conversion specifications in format are replaced with zero or more elements of values. The effect is similar
to using the sprint £ () in the C language.

If format requires a single argument, values may be a single non-tuple object.”*¢ 3% Otherwise, values must be a
tuple with exactly the number of items specified by the format bytes object, or a single mapping object (for example,
a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The "% "' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified asan ' * ' (asterisk), the actual width is read from the next element
of the tuple in values, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.11.0

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the ' %' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (b’ has quote types.' %
C. {b'language': b"Python", b"number": 21})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

"#' | The value conversion will use the “alternate form” (where defined below).

'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' O ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asigncharacter ('+"' or '—") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python —so e.g. $1d is identical
to sd.

The conversion types are:

Con- Meaning Notes

version

'd! Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (1)

'u' Obsolete type — it is identical to 'd'. ®)

'x! Signed hexadecimal (lowercase).)

'X! Signed hexadecimal (uppercase). 2

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B! Floating point decimal format. 3)

'g' Floating point format. Uses lowercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'G! Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

‘¢! Single byte (accepts integer or single byte objects).

'b' Bytes (any object that follows the buffer protocol or has __bytes__ ()). @)

's! 's' is an alias for "b' and should only be used for Python2/3 code bases. (6)

'a' Bytes (converts any Python object using repr (obj) .encode ('ascii', 'back- | (5)
slashreplace')).

'r! 'r' isanalias for 'a' and should only be used for Python2/3 code bases. @)

'y No argument is converted, results ina ' %' character in the result.

Notes:
(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x ' or 'X' format was used)
to be inserted before the first digit.

70 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) b'%s" is deprecated, but will not be removed during the 3.x series.
(7) b'%x" is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:
PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (object)

Create a memoryview that references object. object must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array.array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = 0, thelengthis 1. If view.ndim =
1, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to
the length of the nested list representation of the view. The i temsi ze attribute will give you the number of
bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9£4350>
>>> bytes(v[1:4])

b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple
of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews
can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with
tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can
be indexed with the empty tuple.

Here is an example with a non-byte format:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

https://peps.python.org/pep-0237/
https://peps.python.org/pep-0461/

The Python Library Reference, Release 3.11.0

>>> import array

>>> a = array.array('1l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview (a)

>>> m[0]

-11111111

>>> m[-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is
not allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1:4] = b'123"

>>> data
bytearray (b'z123fg")
>>> v[2:3] = b'span'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spamn'
>>> data
bytearray(b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The

hash is defined as hash (m) == hash (m.tobytes ()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg')

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews
with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.
Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq__ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of st ruct format strings currently supported by tolist (), v and w are equal if v.
tolist () == w.tolist ():

>>> import array

>>> a = array.array('1', [1, 2, 3, 4, 51])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.01])
>>> c = array.array('b', [5, 3, 11])

(continues on next page)

72

Chapter 4. Built-in Types

https://peps.python.org/pep-3118/

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> x = memoryview(a)

>>> y = memoryview (b)

>>> x == g ==y ==

True

>>> x.tolist () == a.tolist() == y.tolist() == b.tolist ()
True

>>> z = y[::-2]

>>> z == C

True

>>> z.tolist () == c.tolist()
True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> g ==

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and
the logical array structure.
tobytes (order='C")

Return the data in the buffer as a bytestring. This is equivalent to calling the byt es constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
tobytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

New in version 3.8: order can be {‘C’, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory.
In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to
C first. order=None is the same as order="C".

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"'

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), memoryview. hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 73

The Python Library Reference, Release 3.11.0

tolist ()

Return the data in the buffer as a list of elements.

>>> memoryview(b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.3])
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

toreadonly ()

Return a readonly version of the memoryview object. The original memoryview object is unchanged.

>>> m = memoryview (bytearray (b'abc'))

>>> mm = m.toreadonly ()

>>> mm.tolist ()

[89, 98, 99]

>>> mm([0] = 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory

>>> m([0] = 43

>>> mm.tolist ()

[43, 98, 99]

New in version 3.8.

release ()

Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
a view is held on them (for example, a byt earray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])

Cast a memoryview to a new format or shape. shape defaultsto [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

The destination format is restricted to a single element native format in st ruct syntax. One of the
formats must be a byte format (‘B’, ‘D’ or ‘c’). The byte length of the result must be the same as the
original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,31])
>>> x = memoryview (a)

>>> x.format

lll

>>> x.itemsize

8

>>> len (x)

>>> x.nbytes
24
>>> = x.cast ('B")
>>> y.format

'Bl

>>> y.itemsize

=

>>> len(y)
24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = b'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"

>>> y = x.cast('c")
>>> y[0] = Db'a'
>>> Db

bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

>>> pbuf = struct.pack("i"*12, *list (range(12)))
>>> x = memoryview (buf)
>>> y = x.cast('i', shape=[2,2,3])

>>> y.tolist ()

ceeo, 1, 21, 3, 4, 511, [le, 7, 81, [9, 10, 11]]]
>>> y.format

'il

>>> y.itemsize
>>> len(y)

>>> y.nbytes

48

>>> z = y.cast('b")
>>> z.format

b

>>> z.itemsize

>>> len(z)
48

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 75

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> z.nbytes
48

Cast 1D/unsigned long to 2D/unsigned long:

>>> buf
>>> x

struct.pack ("L"*6,
memoryview (buf)
x.cast('L",
>>> len(y)

2

>>> y.nbytes
48

>>> y.tolist(
(1o, 1, 21, [

>>> vy

)
3, 4, 511

shape=[2,

*list (range (6)))

31)

New in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz'")
>>> m memoryview (b)
>>> m.obj is b

True

New in version 3.3.

nbytes
nbytes == product (shape) * itemsize == len (m.tobytes ()). Thisis the amount
of space in bytes that the array would use in a contiguous representation. It is not necessarily equal to
len (m):
>>> import array
>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)
>>> len (m)
5
>>> m.nbytes
20
>>> y = m[::2]
>>> len(y)
3
>>> y.nbytes
12
>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack("d"*12,
>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,
>>> y.tolist ()

[ro.o0, 1.5, 3.0, 4.51, [6.0,
>>> len(y)

3

*[1.5%x for x in range(12)])

41)

7.5, 9.0, 10.51, [12.0, 13.5, 15.0, 16.5]]

(continues on next page)

76

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> y.nbytes
96

New in version 3.3.

readonly

A bool indicating whether the memory is read only.

format

A string containing the format (in st ruct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are
restricted to native single element formats.

Changed in version 3.3: format 'B"' is now handled according to the struct module syntax. This means
that memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize

The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview (array.array ('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape

A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.
Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides

A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets

Used internally for PIL-style arrays. The value is informational only.

c_contiguous

A bool indicating whether the memory is C-contiguous.
New in version 3.3.

f_contiguous

A bool indicating whether the memory is Fortran contiguous.
New in version 3.3.

contiguous

A bool indicating whether the memory is contiguous.

New in version 3.3.

4.8.

Binary Sequence Types — bytes, bytearray, memoryview 77

The Python Library Reference, Release 3.11.0

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len (set),and for x in set. Being an unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {'jack', 'sjoerd'}, inaddition to the set constructor.

The constructors for both classes work the same:
class set ([iterable])

class frozenset ([iterable])

Return a new set or frozenset object whose elements are taken from iterable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Sets can be created by several means:
e Use a comma-separated list of elements within braces: { ' jack', 'sjoerd'}
» Use a set comprehension: {¢ for ¢ in 'abracadabra' if ¢ not in 'abc'}
* Use the type constructor: set (), set (' foobar'),set(['a', 'b', 'foo'l)
Instances of set and frozenset provide the following operations:
len(s)
Return the number of elements in set s (cardinality of s).
x in s
Test x for membership in s.

X not in s

Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.
issubset (other)
set <= other
Test whether every element in the set is in other.
set < other
Test whether the set is a proper subset of other, that is, set <= other and set != other.
issuperset (other)
set >= other

Test whether every element in other is in the set.

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

set > other

Test whether the set is a proper superset of other, thatis, set >= other and set != other.

union (*others)
set | other |

Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -

Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other

Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union (), intersection(), difference(), symmet-—
ric_difference (), issubset (), and issuperset () methods will accept any iterable as an ar-
gument. In contrast, their operator based counterparts require their arguments to be sets. This precludes
error-prone constructions like set ('abc') & 'cbs' in favor of the more readable set ('abc') .
intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if
the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set
if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For exam-
ple, set ('abc') == frozenset ('abc') returns True and so does set ('abc') in
set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)

4.9. Set Types — set, frozenset 79

The Python Library Reference, Release 3.11.0

set —= other |

Update the set, removing elements found in others.

symmetric_difference_update (other)
set “~= other

Update the set, keeping only elements found in either set, but not in both.

add (elem)

Add element elem to the set.

remove (elem)

Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)

Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.
clear ()
Remove all elements from the set.
Note, the non-operator versions of the update (), intersection_update(), differ-

ence_update (), and symmetric_difference_update () methods will accept any iterable
as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set.
To support searching for an equivalent frozenset, a temporary one is created from elem.

4.10 Mapping Types —dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes,
and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictio-
naries or other mutable types (that are compared by value rather than by object identity) may not be used as keys.
Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such
as 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry. (Note however, that since
computers store floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

class dict (**kwargs)

class dict (mapping, **kwargs)

class dict (iterable, **kwargs)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Dictionaries can be created by several means:

* Use a comma-separated list of key: value pairs within braces: { ' jack': 4098, 'sjoerd':
4127} o0r {4098: 'Jack', 4127: 'sjoerd'}

* Use a dict comprehension: { }, {x: x ** 2 for x in range (10)}

e Use the type constructor: dict (), dict ([('foo', 100), ('bar', 200) 1),
dict (foo=100, bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding
value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,
"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1])

>>> e = dict({'three': 3, 'one': 1, 'two': 2})

>>> f = dict({'one': 1, 'three': 3}, two=2)

>>> g == b == ¢ == == e ==

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):
list (d)
Return a list of all the keys used in the dictionary d.
len(d)
Return the number of items in the dictionary d.
d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation
calls that method with the key key as argument. The d[key] operation then returns or raises what-
ever is returned or raised by the _ _missing__ (key) call. No other operations or methods invoke
__missing__ (). If _ missing__ () is not defined, KeyErrorisraised. _ missing__ ()
must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__(self, key):
.. return 0
>>> ¢ = Counter /()
>>> c['red']

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. A different
__missing__ methodisused by collections.defaultdict.

d[key] = value
Set d[key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

4.10. Mapping Types —dict 81

The Python Library Reference, Release 3.11.0

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()

Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iferable and values set to value.
fromkeys () is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as
an empty list. To get distinct values, use a dict comprehension instead.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, value) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key[, default])

If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem ()
Remove and return a (key, wvalue) pair from the dictionary. Pairs are returned in LIFO (last-in,
first-out) order.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

reversed (d)
Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed (d.keys ()).

New in version 3.8.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.
update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict .values () view and another will always return False.
This also applies when comparing dict .values () to itself:

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

>>> d = {'a': 1}
>>> d.values () == d.values|{()
False

d | other

Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries.
The values of other take priority when d and other share keys.

New in version 3.9.

d |= other

Update the dictionary d with keys and values from other, which may be either a mapping or an iterable
of key/value pairs. The values of other take priority when d and other share keys.

New in version 3.9.

Dictionaries compare equal if and only if they have the same (key, value) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=", >=’, >") raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after
deletion are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)

['one', 'two', 'three', 'four']

>>> list (d.values())

(1, 2, 3, 4]
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implemen-
tation detail of CPython from 3.6.

Dictionaries and dictionary views are reversible.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d

{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (reversed(d))

['four', 'three', 'two', 'one']

>>> list (reversed(d.values()))

(4, 3, 2, 1]
>>> list (reversed(d.items()))
[("four', 4), ('three', 3), ('two', 2), ('one', 1)]

Changed in version 3.8: Dictionaries are now reversible.
See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10. Mapping Types — dict 83

The Python Library Reference, Release 3.11.0

4.10.1 Dictionary view objects

The objects returned by dict . keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len(dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.
Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using

zip():pairs = zip(d.values (), d.keys ()). Another way to create the same listis pairs =
[(v, k) for (k, v) in d.items{()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

reversed (dictview)
Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse
order of the insertion.

Changed in version 3.8: Dictionary views are now reversible.

dictview.mapping

Return a t ypes. MappingProxyType that wraps the original dictionary to which the view refers.
New in version 3.10.

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since
the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections.abc. Set are available (for example, ==, <, or *).

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values/()

>>> # iteration

>>> n = 0

>>> for val in values:
n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

[2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|['eggs']

(continues on next page)

84 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> del dishes|['sausage']
>>> list (keys)
['bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'"bacon'}

>>> keys ©* {'sausage', 'Jjuice'}
{'juice', 'sausage', 'bacon', 'spam'}

>>> # get back a read-only proxy for the original dictionary
>>> values.mapping

mappingproxy ({'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500})
>>> values.mapping['spam']

500

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the
statement body is executed and exited when the statement ends:

contextmanager.__enter__ ()

Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the
with statement without affecting code outside the with statement.

contextmanager.__exit___ (exc_type, exc_val, exc_tb)

Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be sup-
pressed. If an exception occurred while executing the body of the with statement, the arguments contain the
exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated specially
beyond their implementation of the context management protocol. See the cont ext 11ibmodule for some examples.

Python’s generators and the context1ib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the context1ib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and__exit___ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.

4.11. Context Manager Types 85

The Python Library Reference, Release 3.11.0

Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.12 Type Annotation Types — Generic Alias, Union

The core built-in types for type annotations are Generic Alias and Union.

4.12.1 Generic Alias Type

GenericAlias objects are generally created by subscripting a class. They are most often used with container
classes, suchas 1 istor dict. Forexample, 1ist [int] isaGenericAlias object created by subscripting the
1ist class with the argument int. GenericAlias objects are intended primarily for use with type annotations.

Note: It is generally only possible to subscript a class if the class implements the special method
__class_getitem__ ().

A GenericAlias object acts as a proxy for a generic type, implementing parameterized generics.

For a container class, the argument(s) supplied to a subscription of the class may indicate the type(s) of the elements
an object contains. For example, set [bytes] can be used in type annotations to signify a set in which all the
elements are of type bytes.

For a class which defines __class_getitem__ () butis not a container, the argument(s) supplied to a subscrip-
tion of the class will often indicate the return type(s) of one or more methods defined on an object. For example,
regular expressions can be used on both the st r data type and the byt es data type:

e If x = re.search('foo', 'foo'), x will be a re.Match object where the return values of x.
group (0) and x [0] will both be of type str. We can represent this kind of object in type annotations
with the GenericAlias re.Match[str].

e Ify = re.search(b'bar', b'bar'), (note the b for bytes), y will also be an instance of re.
Mat ch, but the return values of yv.group (0) and y [0] will both be of type bytes. In type annotations,
we would represent this variety of re.Match objects with re .Match [bytes].

GenericAlias objects are instances of the class types.GenericAlias, which can also be used to create
GenericAlias objects directly.

TIX, Y, ...]

Creates a GenericAlias representing a type T parameterized by types X, Y, and more depending on the T
used. For example, a function expecting a 1 i st containing f1oat elements:

def average(values: list[float]) —-> float:
return sum(values) / len(values)

Another example for mapping objects, using a dict, which is a generic type expecting two type parameters
representing the key type and the value type. In this example, the function expects a dict with keys of type
str and values of type int:

def send_post_request (url: str, body: dict[str, int]) -> None:

The builtin functions i sinstance () and issubclass () donotaccept GenericAlias types for their second
argument:

>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot be a parameterized generic

86 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

The Python runtime does not enforce type annotations. This extends to generic types and their type parameters.
When creating a container object from a GenericAlias, the elements in the container are not checked against
their type. For example, the following code is discouraged, but will run without errors:

>>> t = list[str]
>>> t([1, 2, 31)
[1, 2, 3]

Furthermore, parameterized generics erase type parameters during object creation:

>>> t = list[str]
>>> type (t)
<class 'types.GenericAlias'>

>>> 1 = t ()
>>> type (1)
<class 'list'>

Calling repr () or str () on a generic shows the parameterized type:

>>> repr(list[int])
'list[int]"

>>> str(list[int])
'list[int]"

The __getitem__ () method of generic containers will raise an exception to disallow mistakes like
dict[str] [str]:

>>> dict[str] [str]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: There are no type variables left in dict[str]

However, such expressions are valid when rype variables are used. The index must have as many elements as there
are type variable items in the GenericAlias object’'s __args__.

>>> from typing import TypeVar
>>> Y = TypeVar('y'")

>>> dict[str, Y] [int]
dict[str, int]

Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive.
e tuple
e list
e dict
e set
* frozenset
* type
* collections.deque
e collections.defaultdict
e collections.OrderedDict

e collections.Counter

4.12. Type Annotation Types — Generic Alias, Union 87

The Python Library Reference, Release 3.11.0

collections
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.
collections.

collections.

contextlib.AbstractContextManager

contextlib.AbstractAsyncContextManager

abc

abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.
abc.

abc.

.ChainMap

.Awaitable
Coroutine
AsyncIterable
Asynclterator
AsyncGenerator
Iterable
Iterator
Generator
Reversible
Container
Collection
Callable

Set

MutableSet
Mapping
MutableMapping
Sequence
MutableSequence
ByteString
MappingView
KeysView
ItemsView

ValuesView

dataclasses.Field

functools.cached_property

functools.partialmethod

os.PathLike

queue.LifoQueue

queue.Queue

queue.PriorityQueue

queue.SimpleQueue

re.Pattern

re.Match

shelve.BsdDbShelf

shelve.DbfilenameShelf

shelve.Shelf

88

Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

* types.MappingProxyType

* weakref.WeakKeyDictionary
* weakref.WeakMethod

* weakref.WeakSet

s weakref.WeakValueDictionary

Special Attributes of GenericAlias objects

All parameterized generics implement special read-only attributes.
genericalias.__origin___

This attribute points at the non-parameterized generic class:

>>> list[int].__origin___
<class 'list'>

genericalias.__args___

This attribute is a tuple (possibly of length 1) of generic types passed to the original
__class_getitem__ () of the generic class:

>>> dict[str, list[int]].__args__
(<class 'str'>, list[int])

genericalias.__parameters__

This attribute is a lazily computed tuple (possibly empty) of unique type variables found in __args__:

>>> from typing import TypeVar

>>> T = TypeVar ('T")
>>> 1ist[T].__parameters___
(NTI)

Note: A GenericAlias object with typing.ParamSpec parameters may not have correct ___pa-—
rameters___ after substitution because t yping.ParamSpec is intended primarily for static type check-
ing.

genericalias.__unpacked___

A boolean that is true if the alias has been unpacked using the * operator (see TypeVarTuple).
New in version 3.11.

See also:

PEP 484 - Type Hints Introducing Python’s framework for type annotations.

PEP 585 - Type Hinting Generics In Standard Collections Introducing the ability to natively parameterize
standard-library classes, provided they implement the special class method __class_getitem__ ().

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes that
can be parameterized at runtime and understood by static type-checkers.

New in version 3.9.

4.12. Type Annotation Types — Generic Alias, Union 89

https://peps.python.org/pep-0484/
https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.11.0

4.12.2 Union Type

A union object holds the value of the | (bitwise or) operation on multiple fype objects. These types are intended
primarily for type annotations. The union type expression enables cleaner type hinting syntax compared to t yping.
Union.

X |1 Y|

Defines a union object which holds types X, Y, and so forth. X | Y means either X or Y. It is equivalent to
typing.Union[X, Y].Forexample, the following function expects an argument of type int or float:

def square (number: int | float) -> int | float:
return number ** 2

union_object == other
Union objects can be tested for equality with other union objects. Details:

¢ Unions of unions are flattened:

’(int | str) | float == int | str | float

* Redundant types are removed:

int | str | int == int | str

* When comparing unions, the order is ignored:

int | str == str | int

e It is compatible with t yping. Union:

int | str == typing.Union[int, str]

* Optional types can be spelled as a union with None:

str | None == typing.Optionall[str]

isinstance (obj, union_object)

issubclass (obj, union_object)

Callsto isinstance () and issubclass () are also supported with a union object:

>>> isinstance("", int | str)
True

However, union objects containing parameterized generics cannot be used:

>>> isinstance(l, int | list[int])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot contain a parameterized generic

The user-exposed type for the union object can be accessed from types.UnionType and used for isin-—
stance () checks. An object cannot be instantiated from the type:

>>> import types
>>> isinstance(int | str, types.UnionType)
True
>>> types.UnionType ()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: cannot create 'types.UnionType' instances

920 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

Note: The __or___ () method for type objects was added to support the syntax X | Y. If a metaclass implements
__or__ (), the Union may override it:

>>> class M (type) :
def _ or_ (self, other):
return "Hello"

>>> class C(metaclass=M) :
pass

>>> C | int

'Hello'

>>> int | C
int | __main__ .C

See also:
PEP 604 — PEP proposing the X | Y syntax and the Union type.

New in version 3.10.

4.13 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.13.1 Modules

The only special operation on a module is attribute access: m. name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist,
rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is ___dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the __dict_
attribute is not possible (you can writem.__dict__['a'] = 1, which definesm. a to be 1, but you can’t write
m.__dict__ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.13.2 Classes and Class Instances

See objects and class for these.

4.13.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.13. Other Built-in Types 91

https://peps.python.org/pep-0604/

The Python Library Reference, Release 3.11.0

4.13.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the se 1 f argument to the argument list.
Bound methods have two special read-only attributes: m.__self___is the object on which the method operates,
and m.___func___is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) is
completely equivalent to callingm.__func__ (m.__self__, arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__func__), setting method attributes on bound methods
is disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order to
set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> ¢ = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method. func__ .whoami = 'my name is method’
>>> c.method.whoami
'my name is method'

See types for more information.

4.13.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compile () function and can be extracted from function
objects through their ___code___ attribute. See also the code module.

Accessing ___code___raises an auditing event object .__getattr__ witharguments objand "__code__".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.13.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module ¢ ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

92 Chapter 4. Built-in Types

The Python Library Reference, Release 3.11.0

4.13.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.13.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named E11ipsis (abuilt-in name). type (E11ipsis) () produces the E111ipsis singleton.

Itis writtenas E11ipsisor....

4.13.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types they
don’t support. See comparisons for more information. There is exactly one NotImplemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.13.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers O and 1, respectively. The built-in function hool () can be used
to convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

4.13.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.14 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict__
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class__

The class to which a class instance belongs.

class.__bases___

The tuple of base classes of a class object.

definition._ _name_

The name of the class, function, method, descriptor, or generator instance.

4.14. Special Attributes 93

The Python Library Reference, Release 3.11.0

definition.__qualname___

The qualified name of the class, function, method, descriptor, or generator instance.
New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.
class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro___
class.__subclasses__ ()

Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. The list is in definition order. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

4.15 Integer string conversion length limitation

CPython has a global limit for converting between int and st r to mitigate denial of service attacks. This limit
only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are
unlimited. The limit can be configured.

The int type in CPython is an abitrary length number stored in binary form (commonly known as a “bignum”). There
exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a
large value such as int ('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE-2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion
algorithm would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys

>>> sys.set_int_max_str_digits (4300) # Illustrative, this is the default.
>>> _ = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432.
—digits; use sys.set_int_max_str_digits () to increase the limit.

>>> 1 = int ('2' * 4300)

>>> len(str(i))

4300

>>> i_squared = i*i

>>> len(str (i_squared))

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599.

—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == i*i # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys. int_info.default_max_str_digits. The lowestlimit
that can be configured is 640 digits as provided in sys. int_info.str_digits_check_threshold.

Verification:

94 Chapter 4. Built-in Types

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

The Python Library Reference, Release 3.11.0

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int ('578966293710682886880994035146873798396722250538762761564"
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big'")

New in version 3.11.

4.15.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:
e int (string) with default base 10.
* int (string, base) for all bases that are not a power of 2.
* str(integer).
* repr (integer)

e any other string conversion to base 10, for example £"{integer}", "{}".format (integer), or
b"%d" % integer.

The limitations do not apply to functions with a linear algorithm:
e int (string, base) withbase 2,4, 8, 16, or 32.
e int.from bytes () and int.to_bytes ().
e hex(),oct(),bin().
e Format Specification Mini-Language for hex, octal, and binary numbers.
e strto float.

e strtodecimal.Decimal.

4.15.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the
limit:
e PYTHONINTMAXSTRDIGITS,e.g. PYTHONINTMAXSTRDIGITS=640 python3 tosetthe limit to 640
or PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.
e —X int_max_str_digits,e.g python3 -X int_max_str_digits=640

e sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or —X
int_max_str_digits. If both the env var and the —X option are set, the —X option takes precedence. A
value of -/ indicates that both were unset, thus a value of sys.int_info.default_max_str_digits
was used during initilization.

From code, you can inspect the current limit and set a new one using these sy s APIs:

* sys.get_int_max_str_digits() and sys.set_int_max_str_digits () are a getter and
setter for the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:
* sys.int_info.default_max_str_digits isthe compiled-in default limit.

* sys.int_info.str_digits_check_threshold is the lowest accepted value for the limit (other
than 0 which disables it).

4.15. Integer string conversion length limitation 95

The Python Library Reference, Release 3.11.0

New in version 3.11.

Caution: Setting a low limit can lead to problems. While rare, code exists that contains integer constants in
decimal in their source that exceed the minimum threshold. A consequence of setting the limit is that Python
source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually
at startup time or import time or even at installation time - anytime an up to date . pyc does not already exist for
the code. A workaround for source that contains such large constants is to convert them to 0x hexadecimal form
as it has no limit.

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the
environment or flag so that it applies during startup and even during any installation step that may invoke Python
to precompile . py sources to . pyc files.

4.15.3 Recommended configuration

The default sys.int_info.default_max_str_digits isexpected to be reasonable for most applications.
If your application requires a different limit, set it from your main entry point using Python version agnostic code as
these APIs were added in security patch releases in versions before 3.11.

Example:

>>> import sys
>>> if hasattr(sys, "set_int_max_str_digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits()
if current_limit == 0 or current_limit > upper_bound:
sys.set_int_max_str_digits (upper_bound)
elif current_limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to O.

96 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. Ina t ry statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which it is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except ion class or one of its subclasses, and not from BaseExcept i on. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

5.1 Exception context

When raising a new exception while another exception is already being handled, the new exception’s ___context___
attribute is automatically set to the handled exception. An exception may be handled when an except or finally
clause, or a with statement, is used.

This implicit exception context can be supplemented with an explicit cause by using £ rom with raise:

raise new_exc from original_exc

The expression following f rom must be an exception or None. It will be setas ___cause___on the raised exception.
Setting __cause___ also implicitly sets the __suppress_context___ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyErrorto AttributeError), while leaving the old exception available in ___context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in __cause___ is always shown when present. An implicitly chained exception in
__context__isshownonlyif _ cause__is Noneand __suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

97

The Python Library Reference, Release 3.11.0

5.2 Inheriting from built-in exceptions

User code can create subclasses that inherit from an exception type. It’s recommended to only subclass one exception
type at a time to avoid any possible conflicts between how the bases handle the args attribute, as well as due to
possible memory layout incompatibilities.

CPython implementation detail: Most built-in exceptions are implemented in C for efficiency, see: Ob-
jects/exceptions.c. Some have custom memory layouts which makes it impossible to create a subclass that inherits
from multiple exception types. The memory layout of a type is an implementation detail and might change between
Python versions, leading to new conflicts in the future. Therefore, it’s recommended to avoid subclassing multiple
exception types altogether.

5.3 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException

The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str () is called on an instance of this class, the representation of the argument(s)
to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1h)

This method sets b as the new traceback for the exception and returns the exception object. It was more
commonly used before the exception chaining features of PEP 3134 became available. The following
example shows how we can convert an instance of SomeException into an instance of OtherEx—
ception while preserving the traceback. Once raised, the current frame is pushed onto the traceback
of the OtherExcept ion, as would have happened to the traceback of the original SomeException
had we allowed it to propagate to the caller.

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

add_note (note)
Add the string note to the exception’s notes which appear in the standard traceback after the exception
string. A TypeErrorisraised if note is not a string.

New in version 3.11.

__notes___
A list of the notes of this exception, which were added with add_note (). This attribute is created
when add_note () is called.
New in version 3.11.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

exception ArithmeticError

The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

98 Chapter 5. Built-in Exceptions

https://github.com/python/cpython/tree/3.11/Objects/exceptions.c
https://github.com/python/cpython/tree/3.11/Objects/exceptions.c
https://peps.python.org/pep-3134/

The Python Library Reference, Release 3.11.0

exception BufferError

Raised when a buffer related operation cannot be performed.

exception LookupError

The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. Iookup ().

5.4 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError

Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

The name and obj attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the attribute that was attempted to be accessed and the object that was accessed for said
attribute, respectively.

Changed in version 3.10: Added the name and ob 7 attributes.

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the io.IOBase.read () and io. IOBase. readline () methods return an empty string when they hit
EOF.)

exception FloatingPointError

Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close ().
It directly inherits from BaseExcept ion instead of Except ion since it is technically not an error.
exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in

from ... import hasa name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered
the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of TmportError which is raised by import when a module could not be located. It is also
raised when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError

Raised when a mapping (dictionary) key is not found in the set of existing keys.

5.4. Concrete exceptions 99

The Python Library Reference, Release 3.11.0

exception KeyboardInterrupt

Raised when the user hits the interrupt key (normally Control—-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally
caught by code that catches Except ion and thus prevent the interpreter from exiting.

Note: Catching a KeyboardInterrupt requires special consideration. Because it can be raised at un-
predictable points, it may, in some circumstances, leave the running program in an inconsistent state. It is
generally best to allow KeyboardInterrupt to end the program as quickly as possible or avoid raising it
entirely. (See Note on Signal Handlers and Exceptions.)

exception MemoryError

Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C’s malloc () function), the interpreter may
not always be able to completely recover from this situation; it nevertheless raises an exception so that a stack
traceback can be printed, in case a run-away program was the cause.

exception NameError

Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

The name attribute can be set using a keyword-only argument to the constructor. When set it represent the
name of the variable that was attempted to be accessed.

Changed in version 3.10: Added the name attribute.

exception NotImplementedError

This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method, or while the class is being developed
to indicate that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that
case either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and NotImplemented are notinterchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])

exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ]]])

This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default
to None if not specified. For backwards compatibility, if three arguments are passed, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The
particular subclass depends on the final e r rno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

errno

A numeric error code from the C variable errno.

winerror

Under Windows, this gives you the native Windows error code. The errno attribute is then an approx-
imate translation, in POSIX terms, of that native error code.

100

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.11.0

Under Windows, if the winerror constructor argument is an integer, the e rrno attribute is determined
from the Windows error code, and the errno argument is ignored. On other platforms, the winerror
argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2

For exceptions that involve a file system path (such as open () or os.unlink ()), filename is
the file name passed to the function. For functions that involve two file system paths (such as os.
rename ()), £ilenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error,
select.error and mmap.error have been merged into OSError, and the constructor may return
a subclass.

Changed in version 3.4: The i 1 ename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding and error handler. Also, the filename2
constructor argument and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is
sometimes raised for integers that are outside a required range. Because of the lack of standardization of
floating point exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from Runt imeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ())is exceeded.
New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref . proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weak ref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StopIteration
Raised by built-in function next () and an iterator's __next___ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError
(retaining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

Changed in version 3.5: Introduced the RuntimeError transformation via from __future__ import
generator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopIteration error raised in a
generator is transformed into a RuntimeError.

5.4. Concrete exceptions 101

https://peps.python.org/pep-0479/
https://peps.python.org/pep-0479/

The Python Library Reference, Release 3.11.0

exception StopAsyncIteration

Must be raised by ___anext__ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError (message, details)

Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions compile (), exec (), or eval (), or when reading the initial script or standard input
(also interactively).

The str () of the exception instance returns only the error message. Details is a tuple whose members are
also available as separate attributes.
filename

The name of the file the syntax error occurred in.

lineno
Which line number in the file the error occurred in. This is 1-indexed: the first line in the file has a
lineno of 1.

offset
The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text

The source code text involved in the error.

end_lineno

Which line number in the file the error occurred ends in. This is 1-indexed: the first line in the file has a
linenoof 1.

end_offset
The column in the end line where the error occurred finishes. This is 1-indexed: the first character in the
line has an of fset of 1.

For errors in f-string fields, the message is prefixed by “f-string: ” and the offsets are offsets in a text constructed
from the replacement expression. For example, compiling f"Bad {a b} field’ results in this args attribute: (‘f-
string: ..., (°, 1,2, ‘(ab)n’, 1, 5)).

Changed in version 3.10: Added the end_1inenoand end_offset attributes.

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of Tndenta-—
tionError.

exception SystemError

Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version;itis also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exception SystemExit

This exception is raised by the sys.exit () function. It inherits from BaseException instead of Ex—
ception so that it is not accidentally caught by code that catches Except ion. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit ().

102

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.11.0

If the value is an integer, it specifies the system exit status (passed to C’s exit () function); if it is None, the
exit status is zero; if it has another type (such as a string), the object’s value is printed and the exit status is one.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to os. fork ()).

code

The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not sup-
ported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an
implementation, Not TmplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1ist when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
resultina ValueError.
exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.
exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.
UnicodeError has attributes that describe the encoding or decoding error. For example, err.
object[err.start:err.end] gives the particular invalid input that the codec failed on.
encoding
The name of the encoding that raised the error.
reason
A string describing the specific codec error.
object
The object the codec was attempting to encode or decode.
start
The first index of invalid data in object.
end
The index after the last invalid data in ob ject.
exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.
exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.
exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.
exception ValueError

Raised when an operation or function receives an argument that has the right type but an inappropriate value,
and the situation is not described by a more precise exception such as IndexError.

5.4. Concrete exceptions 103

The Python Library Reference, Release 3.11.0

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception WindowsError

Only available on Windows.

5.4.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.
In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.
exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.
Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError
and ConnectionResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE
and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED.

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError

Raised when trying to create a file or directory which already exists. Corresponds to errno EEXTST.

exception FileNotFoundError

Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

104 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.11.0

exception InterruptedError

Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising TnterruptedError.

exception IsADirectoryError

Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError

Raised when a directory operation (such as os. 1istdir ()) is requested on something which is not a di-
rectory. On most POSIX platforms, it may also be raised if an operation attempts to open or traverse a
non-directory file as if it were a directory. Corresponds to errno ENOTDIR.

exception PermissionError

Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERM.

exception ProcessLookupError

Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

exception TimeoutError

Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.
New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and IO exception hierarchy

5.5 Warnings
The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning

Base class for warning categories.

exception UserWarning

Base class for warnings generated by user code.

exception DeprecationWarning

Base class for warnings about deprecated features when those warnings are intended for other Python devel-
opers.

Ignored by the default warning filters, except in the __main___ module (PEP 565). Enabling the Python
Development Mode shows this warning.

The deprecation policy is described in PEP 387.

exception PendingDeprecationWarning

Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are
not deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and Dep—
recationWarning is preferred for already active deprecations.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

The deprecation policy is described in PEP 387.

5.5. Warnings 105

https://peps.python.org/pep-0475/
https://peps.python.org/pep-3151/
https://peps.python.org/pep-0565/
https://peps.python.org/pep-0387/
https://peps.python.org/pep-0387/

The Python Library Reference, Release 3.11.0

exception SyntaxWarning

Base class for warnings about dubious syntax.

exception RuntimeWarning

Base class for warnings about dubious runtime behavior.

exception FutureWarning

Base class for warnings about deprecated features when those warnings are intended for end users of applica-
tions that are written in Python.

exception ImportWarning

Base class for warnings about probable mistakes in module imports.

Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

exception UnicodeWarning

Base class for warnings related to Unicode.

exception EncodingWarning

Base class for warnings related to encodings.
See Opt-in Encoding Warning for details.

New in version 3.10.

exception BytesWarning

Base class for warnings related to bytes and bytearray.

exception ResourceWarning

Base class for warnings related to resource usage.
Ignored by the default warning filters. Enabling the Python Development Mode shows this warning.

New in version 3.2.

5.6 Exception groups

The following are used when it is necessary to raise multiple unrelated exceptions. They are part of the exception hi-
erarchy so they can be handled with except like all other exceptions. In addition, they are recognised by except *,
which matches their subgroups based on the types of the contained exceptions.

exception ExceptionGroup (msg, excs)

exception BaseExceptionGroup (msg, excs)

Both of these exception types wrap the exceptions in the sequence excs. The msg parameter must be a string.
The difference between the two classes is that BaseExceptionGroup extends BaseException and it
can wrap any exception, while ExceptionGroup extends Exception and it can only wrap subclasses
of Exception. This design is so that except Exception catches an ExceptionGroup but not
BaseExceptionGroup.

The BaseExceptionGroup constructor returns an ExceptionGroup rather than a BaseExcep—
tionGroup if all contained exceptions are Except ion instances, so it can be used to make the selection
automatic. The Except ionGroup constructor, on the other hand, raises a TypeError if any contained
exception is not an Except ion subclass.

message

The msg argument to the constructor. This is a read-only attribute.

exceptions

A tuple of the exceptions in the excs sequence given to the constructor. This is a read-only attribute.

106

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.11.0

subgroup (condition)

Returns an exception group that contains only the exceptions from the current group that match condition,
or None if the result is empty.

The condition can be either a function that accepts an exception and returns true for those that should be
in the subgroup, or it can be an exception type or a tuple of exception types, which is used to check for a
match using the same check that is used in an except clause.

The nesting structure of the current exception is preserved in the result, as are the values of its message,
__traceback__,_ cause__,__context__and _ notes__ fields. Empty nested groups are
omitted from the result.

The condition is checked for all exceptions in the nested exception group, including the top-level and any
nested exception groups. If the condition is true for such an exception group, it is included in the result
in full.

split (condition)
Like subgroup (), but returns the pair (match, rest) where match is sub-
group (condition) and rest is the remaining non-matching part.

derive (excs)
Returns an exception group with the same message, __traceback__, _ cause__, _ con-
text___and __notes__ but which wraps the exceptions in excs.

This method is used by subgroup () and split (). A subclass needs to override it in order to make
subgroup () and split () return instances of the subclass rather than ExceptionGroup.

>>> class MyGroup (ExceptionGroup) :
def derive(self, exc):
return MyGroup (self.message, exc)

>>> MyGroup ("eg", [ValueError(l), TypeError(2)]).split (TypeError)
(MyGroup ('eg', [TypeError(2)]), MyGroup('eg', [ValueError(1l)]))

Note that BaseExceptionGroup defines __new__ (), so subclasses that need a different constructor
signature need to override that rather than __init__ (). For example, the following defines an exception
group subclass which accepts an exit_code and and constructs the group’s message from it.

class Errors (ExceptionGroup) :

def _ new_ (cls, errors, exit_code):
self = super().__new__ (Errors, f"exit code: {exit_code}", errors)
self.exit_code = exit_code

return self

def derive(self, excs):
return Errors (excs, self.exit_code)

5.7

New in version 3.11.

Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException

[TTTT

BaseExceptionGroup
GeneratorExit
KeyboardInterrupt
SystemExit
Exception

— ArithmeticError

(continues on next page)

5.7. Exception hierarchy 107

The Python Library Reference, Release 3.11.0

(continued from previous page)

- rrrrtrrItiT T 10 T ITIrir

— FloatingPointError
F—— OverflowError
L— ZeroDivisionError
AssertionError
AttributeError
BufferError
EOFError
ExceptionGroup [BaseExceptionGroup]
ImportError
L— ModuleNotFoundError
LookupError
— IndexError
L KeyError
MemoryError
NameError
L— UnboundLocalError
OSError
— BlockingIOError
ChildProcessError
ConnectionError
— BrokenPipeError
— ConnectionAbortedError
— connectionRefusedError
L— ConnectionResetError
FileExistsError
FileNotFoundError
InterruptedError
IsADirectoryError
NotADirectoryError
PermissionError
ProcessLookupError
TimeoutError
ReferenceError
RuntimeError
F—— NotImplementedError
L— RecursionError
StopAsynclteration
StopIteration
SyntaxError
L— IndentationError
L— TabError
SystemError
TypeError
ValueError
L— UnicodeError
— UnicodeDecodeError
— UnicodeEncodeError
L— UnicodeTranslateError
Warning
BytesWarning
DeprecationWarning
EncodingWarning
FutureWarning
ImportWarning
PendingDeprecationWarning
ResourceWarning
RuntimeWarning
SyntaxWarning
UnicodeWarning
UserWarning

[TTTITTrT 1T

[TTTTTTTTTIT

108

Chapter 5.

Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text processing
services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition, see
the documentation for Python’s built-in string type in 7ext Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will
not change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will
not change.

string.digits
The string '0123456789".

string.hexdigits
The string '0123456789%abcde fABCDEF'

string.octdigits
The string '01234567".

string.punctuation

String of ASCII characters which are considered punctuation characters in the C locale: ! "#$%&" () *+, —.
[ep<=>2@[\]1"_"{|}~

109

https://github.com/python/cpython/tree/3.11/Lib/string.py

The Python Library Reference, Release 3.11.0

string.printable
String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation,and whitespace.

string.whitespace

A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the for—
mat () method described in PEP 3101. The Formatter class in the st ring module allows you to create and
customize your own string formatting behaviors using the same implementation as the built-in format () method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, /, *args, **kwargs)

The primary API method. It takes a format string and an arbitrary set of positional and keyword argu-
ments. It is just a wrapper that calls viformat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)

This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dic-
tionary as individual arguments using the *args and **kwargs syntax. vformat () does the work
of breaking up the format string into character data and replacement fields. It calls the various methods
described below.

In addition, the Format ter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)

Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, con-
version). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement field.
If there is no literal text (which can happen if two replacement fields occur consecutively), then literal_text
will be a zero-length string. If there is no replacement field, then the values of field_name, format_spec
and conversion will be None.

get_field (field_name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)

Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to viormat (), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argu-
ment of 0. The name attribute will be looked up after get__value () returns by calling the built-in
getattr () function.

110 Chapter 6. Text Processing Services

https://peps.python.org/pep-3101/
https://peps.python.org/pep-3101/

The Python Library Reference, Release 3.11.0

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check_unused_args (used_args, args, kwargs)

Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args () is assumed to
raise an exception if the check fails.

format_£field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_f£field (value, conversion)

Converts the value (returned by get_ field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘t’ (repr) and ‘a’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Format ter class share the same syntax for format strings (although in the
case of Format ter, subclasses can define their own format string syntax). The syntax is related to that of formatted
string literals, but it is less sophisticated and, in particular, does not support arbitrary expressions.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces
is considered literal text, which is copied unchanged to the output. If you need to include a brace character in the
literal text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field = "{" [field _name] ["!" conversion] [":" format_spec]
field_name = arg_name ("." attribute_name | "[" element_index "]
arg_name = [identifier | digit+]

attribute_name = identifier

element_index = digit+ | index_string

index_string = <any source character except "]"> +

conversion = "r" | "s" | "a"

format_spec u= <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon
' : '. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a
positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a
format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers O, 1, 2, ... will be
automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary
dictionary keys (e.g., the strings '10"' or ':—] ") within a format string. The arg_name can be followed by any
number of index or attribute expressions. An expression of the form ' .name' selects the named attribute using
getattr (), while an expression of the form ' [index] ' does an index lookup using __getitem__ ().

Changed in version 3.1: The positional argument specifiers can be omitted for st r. format (),so "{} {}'.
format (a, b) isequivalentto '{0} {1}'.format (a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

6.1. string — Common string operations 111

The Python Library Reference, Release 3.11.0

"First, thou shalt count to " # References first positional argument

"Bring me a " # Implicitly references the first positional.
—argument

"From to " # Same as "From {0} to {1}"

"My quest is " # References keyword argument 'name'

"Weight in tons " # 'weight' attribute of first positional arg
"Units destroyed: " # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the __ format__ () method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
__format__ (), the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' ! s' which calls st r () on the value, ' ! r' which calls repr ()
and '!a' whichcalls ascii ().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
afield name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields within
the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a value to
be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in
format () function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called st r () on
the value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

format_spec n= [[filllalign][sign]l [z] [#]1[0] [width] [grouping option] [.precision] |
fill = <any character>

allgn := "<" | ">" I nwm_mn | nAmnNn

Slgn := "+" | n_mn I " n

width = digit+

grouping_option = e

precision = digit+

type ::= "b" | "c" | "d" | "e" ‘ "E" | "f" ‘ "F" | "g" | "G" | "n" | "O" I

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a space
if omitted. It is not possible to use a literal curly brace (”{” or “}”) as the fill character in a formatted string literal or

112 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

when using the st r. format () method. However, it is possible to insert a curly brace with a nested replacement
field. This limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

Op- | Meaning
tion
'<' | Forces the field to be left-aligned within the available space (this is the default for most objects).
'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).
'="| Forces the padding to be placed after the sign (if any) but before the digits. This is used
for printing fields in the form “+000000120’. This alignment option is only valid for numeric
types. It becomes the default for numbers when ‘0’ immediately precedes the field width.

'~ ' | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T+t indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The 'z ' option coerces negative zero floating-point values to positive zero after rounding to the format precision.
This option is only valid for floating-point presentation types.

Changed in version 3.11: Added the 'z ' option (see also PEP 682).

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float and complex types. For integers, when binary, octal,
or hexadecimal output is used, this option adds the respective prefix '0b', '0o', '0Ox', or '0X"' to the output
value. For float and complex the alternate form causes the result of the conversion to always contain a decimal-point
character, even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions
only if a digit follows it. In addition, for 'g' and 'G' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n'
integer presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The '_"' option signals the use of an underscore for a thousands separator for floating point presentation types and
for integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X"', underscores will be
inserted every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the ' _' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other for-
matting characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the widrh field by a zero (' 0 ') character enables sign-aware zero-
padding for numeric types. This is equivalent to a fill character of ' 0 ' with an alignment type of '=".

Changed in version 3.10: Preceding the width field by ' 0 ' no longer affects the default alignment for strings.

The precision is a decimal integer indicating how many digits should be displayed after the decimal point for pre-
sentation types '£' and 'F', or before and after the decimal point for presentation types 'g' or 'G'. For string
presentation types the field indicates the maximum field size - in other words, how many characters will be used from
the field content. The precision is not allowed for integer presentation types.

6.1. string — Common string operations 113

https://peps.python.org/pep-0682/
https://peps.python.org/pep-0378/
https://peps.python.org/pep-0515/

The Python Library Reference, Release 3.11.0

Finally, the fype determines how the data should be presented.

The available string presentation types are:

Type | Meaning

's! String format. This is the default type for strings and may be omitted.
None | Thesameas 's"'.

The available integer presentation types are:

Type Meaning

'b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd"' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

'x ' | Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.
'X "' | Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9.
In case '#' is specified, the prefix ' 0x ' will be upper-cased to ' 0X' as well.

Number. This is the same as 'd"', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed

below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for f1oat and Decimal values are:

114 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

Type Meaning

'e' | Scientific notation. For a given precision p, formats the number in scientific notation with the
letter ‘e’ separating the coefficient from the exponent. The coefficient has one digit before and
p digits after the decimal point, for a total of p + 1 significant digits. With no precision
given, uses a precision of 6 digits after the decimal point for 1 oat, and shows all coefficient
digits for Decimal. If no digits follow the decimal point, the decimal point is also removed
unless the # option is used.

'E' | Scientific notation. Same as 'e' except it uses an upper case ‘E’ as the separator character.

' £' | Fixed-point notation. For a given precision p, formats the number as a decimal number with
exactly p digits following the decimal point. With no precision given, uses a precision of
6 digits after the decimal point for f1oat, and uses a precision large enough to show all
coeflicient digits for Decimal. If no digits follow the decimal point, the decimal point is
also removed unless the # option is used.

'F' | Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

'g"' | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude. A precision of 0 is treated as equivalent to a precision of 1.

The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p—1 would have exponent exp. Then, if m <= exp < p, where mis -4
for floats and -6 for Decimals, the number is formatted with presentation type 'f' and
precision p—1-exp. Otherwise, the number is formatted with presentation type 'e' and
precision p—1. In both cases insignificant trailing zeros are removed from the significand, and
the decimal point is also removed if there are no remaining digits following it, unless the ' # '
option is used.

With no precision given, uses a precision of 6 significant digits for f1oat. For Decimal,
the coeflicient of the result is formed from the coefficient digits of the value; scientific notation
is used for values smaller than 1e—6 in absolute value and values where the place value of the
least significant digit is larger than 1, and fixed-point notation is used otherwise.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
—-inf, 0, -0 and nan respectively, regardless of the precision.

'G' | General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' | Number. This is the same as 'g"', except that it uses the current locale setting to insert the
appropriate number separator characters.

%' | Percentage. Multiplies the number by 100 and displays in fixed (' £ ') format, followed by a
percent sign.

None For float this is the same as 'g', except that when fixed-point notation is used to format
the result, it always includes at least one digit past the decimal point. The precision used is as
large as needed to represent the given value faithfully.

For Decimal, this is the same as either 'g' or 'G' depending on the value of context.
capitals for the current decimal context.

The overall effect is to match the output of st r () as altered by the other format modifiers.

Format examples

This section contains examples of the st r. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, '$03.2f" can be translated to ' { : 03.2f}"'.

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

>>> ! , , '.format('a', 'b', 'c")
'a, b, c'
>>> ! , , '.format('a', 'b', 'c'") # 3.1+ only

(continues on next page)

6.1. string — Common string operations 115

The Python Library Reference, Release 3.11.0

(continued from previous page)

'a, b, ¢’

>>> '"J/2), {1}, {0}".format('a', 'b', 'c")

'c, b, a'

>>> "2}, {1}, {0}".format (*'abc"') # unpacking argument sequence

'c, b, a'

>>> "/[0}{1}{0}" . format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra’

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N"', longitude='-
—115.81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitude}, {longitude}'.format (**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag/}."').format (c)

'The complex number (3-57j) is formed from the real part 3.0 and the imaginary part.
‘—>_5 . O . '
>>> class Point:
def _ _init__ (self, x, y):
self.x, self.y = x, y
def _ str_ (self):
return 'Point ({self.x}, {self.y})'.format (self=self)

>>> str(Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}".format (coord)
'X: 3; Y: 5

Replacing $s and $r:

>>> "repr () shows quotes: {/r}; str() doesn't: {!s}".format ('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ' {:<30}"'".format ('left aligned')
'left aligned !

>>> ' {:>30}" . format ('right aligned')
! right aligned'

>>> '{:730)" . format ('centered"')

! centered '

>>> '{:#4730)" format ('centered") # use '"*' as a fill char
'***********centered***********'

Replacing $+£, $—f, and $ £ and specifying a sign:

>>> "{:4f}; {:+ .format (3.14, -3.14) # show it always

{41}
'+3.140000; -3.140000"
>>> "/ f); {: £} . format(3.14, -3.14) # show a space for positive numbers
' 3.140000; -3.140000"

(continues on next page)

116 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> "/[:-f); {:-f}" . format(3.14, -3.14) # show only the minus —-—- same as '{:f};
—{:f}'
'3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; Dbin: 101010"'

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010"

Using the comma as a thousands separator:

>>> '/, }'" format (1234567890)
'1,234,567,890'

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"'

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d SH:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):
"{0:{fill}{align}l6}"'.format (text, fill=align, align=align)

'left<<<<!

'ANAANcenter AN

'>>>>>>>>>>>right!’

>>>

>>> octets = [192, 168, 0, 1]

>>> "/ 02X 02X) :02X){ 02X} . format (*octets)
'COAB0001"

>>> int (_, 16)

3232235521

>>>

>>> width = 5
>>> for num in range(5,12):
for base in 'dXob':
print ('{0: {width}{

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

> }} ' . format (num, base=base, width=width), end='

6.1. string — Common string operations

117

The Python Library Reference, Release 3.11.0

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template
strings is for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to
translate than other built-in string formatting facilities in Python. As an example of a library built on template strings
for 118n, see the flufl.il8n package.

Template strings support $-based substitutions, using the following rules:
e $$ is an escape; it is replaced with a single $.

e $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" isrestricted to any case-insensitive ASCII alphanumeric string (including underscores) that
starts with an underscore or ASCII letter. The first non-identifier character after the $ character terminates
this placeholder specification.

e ${identifier} isequivalentto $identifier. Itis required when valid identifier characters follow the
placeholder but are not part of the placeholder, such as "${noun}ification".

Any other appearance of $ in the string will result in a ValueError being raised.
The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (femplate)
The constructor takes a single argument which is the template string.

substitute (mapping={}, /, **kwds)
Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the
placeholders from kwds take precedence.

safe_substitute (mapping={}, /, **kwds)

Like substitute (), except that if placeholders are missing from mapping and kwds, instead of rais-
ing a KeyError exception, the original placeholder will appear in the resulting string intact. Also,
unlike with substitute (), any other appearances of the $ will simply return $ instead of raising
ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return a
usable string instead of raising an exception. In another sense, safe_substitute () may be any-
thing other than safe, since it will silently ignore malformed templates containing dangling delimiters,
unmatched braces, or placeholders that are not valid Python identifiers.

is_wvalid()
Returns false if the template has invalid placeholders that will cause substitute () to raise Val-—
uekrror.

New in version 3.11.

get_identifiers ()

Returns a list of the valid identifiers in the template, in the order they first appear, ignoring any invalid
identifiers.

New in version 3.11.
Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s femplate argument. In general, you shouldn’t change it, but
read-only access is not enforced.

Here is an example of how to use a Template:

118 Chapter 6. Text Processing Services

https://peps.python.org/pep-0292/
https://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.11.0

>>> from string import Template

>>> s = Template ('Swho likes S$what')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim')

>>> Template ('Give $who $100') .substitute(d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)
Traceback (most recent call last):

KeyError: 'what'
>>> Template ('Swho likes Swhat') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

* delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed. Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must
be set in the subclass’s class namespace).

* idpattern — This is the regular expression describing the pattern for non-braced placeholders. The default value
is the regular expression (?a:[_a-z][_a-z0-9]1*). If this is given and braceidpattern is None this
pattern will also apply to braced placeholders.

Note: Since default flagsis re . IGNORECASE, pattern [a—z] can match with some non-ASCII characters.
That’s why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the
braces.

e braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None
which means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given,
this allows you to define different patterns for braced and unbraced placeholders.

New in version 3.7.

¢ flags — The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added
to the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

* escaped — This group matches the escape sequence, e.g. $$, in the default pattern.

* named — This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

* braced — This group matches the brace enclosed placeholder name; it should not include either the delimiter or
braces in the capturing group.

* invalid — This group matches any other delimiter pattern (usually a single delimiter), and it should appear last
in the regular expression.

The methods on this class will raise ValueError if the pattern matches the template without one of these named
groups matching.

6.1. string — Common string operations 119

The Python Library Reference, Release 3.11.0

6.1.5 Helper functions

string.capwords (s, sep=None)

Split the argument into words using str.split (), capitalize each word using str.capitalize (),
and join the capitalized words using st r. join (). If the optional second argument sep is absent or None,
runs of whitespace characters are replaced by a single space and leading and trailing whitespace are removed,
otherwise sep is used to split and join the words.

6.2 re — Regular expression operations

Source code: Lib/re/

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (bytes). However,
Unicode strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern
or vice-versa; similarly, when asking for a substitution, the replacement string must be of the same type as both the
pattern and the search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write ' \\\\ ' as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal. Also, please note that any invalid escape sequences in Python’s usage of the backslash in string literals
now generate a DeprecationlWarning and in the future this will become a SyntaxError. This behaviour
will happen even if it is a valid escape sequence for a regular expression.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ' r'. So r"\n" is a two-character string containing '\ ' and 'n"', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this
raw string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers additional
functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pg will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book [Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a', or
' 0", are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,

120 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.11/Lib/re/
https://pypi.org/project/regex/

The Python Library Reference, Release 3.11.0

so last matches the string ' last '. (In the rest of this section, we’ll write RE’s in this special style,
usually without quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

Repetition operators or quantifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the
non-greedy modifier suffix 2, and with other modifiers in other implementations. To apply a second repetition to an
inner repetition, parentheses may be used. For example, the expression (?:a{6}) * matches any multiple of six
'a' characters.

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALT flag has been specified,
this matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

$ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. foo matches both ‘foo’ and ‘foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo.$ in 'fool\nfoo2\n"' matches 002’ normally, but
‘fool’ in MULTILINE mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just
before the newline, and one at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘a’, ‘ab’, or ‘a’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘a’ followed by any
non-zero number of ‘b’s; it will not match just ‘a’.

? Causes the resulting RE to match O or 1 repetitions of the preceding RE. ab? will match either ‘a’ or ‘ab’.

?,4?,?2? The '', '+',and ' ?' quantifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. *> is matched against ' <a> b <c>"', it will match the entire string, and
not just '<a>"'. Adding ? after the quantifier makes it perform the match in non-greedy or minimal fashion;
as few characters as possible will be matched. Using the RE <. *?> will match only '<a>"'.

4, 44, ?+ Like the '', "+', and '?' quantifiers, those where '+' is appended also match as many times as
possible. However, unlike the true greedy quantifiers, these do not allow back-tracking when the expression
following it fails to match. These are known as possessive quantifiers. For example, a*a will match 'aaaa'
because the a* will match all 4 'a's, but, when the final 'a"' is encountered, the expression is backtracked
so that in the end the a* ends up matching 3 'a's total, and the fourth 'a' is matched by the final 'a"'.
However, when a*+a is used to match 'aaaa’', the a*+ will match all 4 'a', but when the final 'a ' fails
to find any more characters to match, the expression cannot be backtracked and will thus fail to match. x*+,
x++ and x?+ are equivalent to (?>x*), (?>x+) and (?>x?) correspondingly.

New in version 3.11.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not
to match. For example, a { 6} will match exactly six 'a' characters, but not five.

{m, n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 'a' characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match
'aaaab' orathousand 'a' characters followed bya 'b', butnot 'aaab'. The comma may not be omitted
or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous quantifier. For example, on the
6-character string 'aaaaaa', a{3,5} will match 5 'a"' characters, while a{3, 5} 2 will only match 3
characters.

{m, n}+ Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as
many repetitions as possible without establishing any backtracking points. This is the possessive version of
the quantifier above. For example, on the 6-character string 'aaaaaa', a{3, 5}+aa attempt to match 5
"a' characters, then, requiring 2 more 'a's, will need more characters than available and thus fail, while

6.2. re — Regular expression operations 121

The Python Library Reference, Release 3.11.0

a{3, 5}aa will match with a{ 3, 5} capturing 5, then 4 'a's by backtracking and then the final 2 'a 's are
matched by the final aa in the pattern. x{m, n}+ is equivalent to (?>x{m, n}).

New in version 3.11.

\ Either escapes special characters (permitting you to match characters like '*', ' 2 ', and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
¢ Characters can be listed individually, e.g. [amk] will match 'a"', 'm',or 'k'.

» Ranges of characters can be indicated by giving two characters and separating them by a ' - ', for example
[a—z] will match any lowercase ASCII letter, [0—-5] [0—9] will match all the two-digits numbers from
00 to 59, and [0-9A-Fa-£f] will match any hexadecimal digit. If - is escaped (e.g. [a\-z]) or if
it’s placed as the first or last character (e.g. [-a] or [a—1]), it will match a literal '-".

¢ Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the
literal characters ' (', "+"', '*',or ') '.

¢ Character classes such as \w or \ S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCIT or LOCALE mode is in force.

 Characters that are not within a range can be matched by complementing the set. If the first character of
the setis '~ ', all the characters that are not in the set will be matched. For example, [~5] will match
any character except '5"', and ["] will match any character except '~ '. ~ has no special meaning if
it’s not the first character in the set.

* To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set.
For example, both [() [\1{}] and [] () [{}] will both match a parenthesis.

» Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the
future. This would change the syntax, so to facilitate this change a FutureWarning will be raised in
ambiguous cases for the time being. That includes sets starting with a literal ' [' or containing literal
character sequences '--", '&&', "~~",and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change
semantically in the future.

| A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use
\ |, or enclose it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals ' (' or ') ', use \ (or
\), or enclose them inside a character class: [(1, [)].

(?...) This is an extension notation (a '?"' following a ' (' is not meaningful otherwise). The first character
after the ' ? ' determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group; (?P<name>. . .) is the only exception to this rule. Following are the currently supported
extensions.

(?ailmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's"', '"u', 'x"'.) The group matches
the empty string; the letters set the corresponding flags: re. A (ASCII-only matching), re. I (ignore case),
re. L (locale dependent), re.M (multi-line), re. S (dot matches all), re . U (Unicode matching), and re.
X (verbose), for the entire regular expression. (The flags are described in Module Contents.) This is useful

122 Chapter 6. Text Processing Services

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.11.0

if you wish to include the flags as part of the regular expression, instead of passing a flag argument to the
re.compile () function. Flags should be used first in the expression string.

Changed in version 3.11: This construction can only be used at the start of the expression.

(?:...) Anon-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?ailmsux—imsx:...) (Zero or more letters from theset 'a', 'i', 'L', 'm', 's"', 'u', 'x"', optionally
followed by '-"' followed by one or more letters from the 'i', 'm', 's"', 'x'.) The letters set or remove
the corresponding flags: re.A (ASCII-only matching), re. I (ignore case), re. L (locale dependent), re.
M (multi-line), re. S (dot matches all), re . U (Unicode matching), and re. X (verbose), for the part of the
expression. (The flags are described in Module Contents.)

The letters 'a', 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined
or follow '—-"'. Instead, when one of them appears in an inline group, it overrides the matching mode in the
enclosing group. In Unicode patterns (?a: .. .) switches to ASCII-only matching, and (?u:...) switches
to Unicode matching (default). In byte pattern (?L:...) switches to locale depending matching, and (?
a:...) switches to ASCII-only matching (default). This override is only in effect for the narrow inline group,
and the original matching mode is restored outside of the group.

New in version 3.6.

Changed in version 3.7: The letters 'a', 'L"' and 'u' also can be used in a group.

(?>...) Attemptsto match . .. asif it was a separate regular expression, and if successful, continues to match
the rest of the pattern following it. If the subsequent pattern fails to match, the stack can only be unwound to
a point before the (?>...) because once exited, the expression, known as an afomic group, has thrown away

all stack points within itself. Thus, (?>.*) . would never match anything because first the . * would match
all characters possible, then, having nothing left to match, the final . would fail to match. Since there are no
stack points saved in the Atomic Group, and there is no stack point before it, the entire expression would thus
fail to match.

New in version 3.11.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group name name. Group names must be valid Python identifiers, and each group name must be
defined only once within a regular expression. A symbolic group is also a numbered group, just as if the group
were not named.

Named groups can be referenced in three contexts. If the patternis (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
. \j_

when processing match object m
* m.group ('quote"')

e m.end ('quote') (etc.)

in a string passed to the repl argument of re.

sub () ¢ \g<quote>

e \g<1>
° \j_

Deprecated since version 3.11: Group names containing non-ASCII characters in bytes patterns.

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named
name.

(?#...) A comment; the contents of the parentheses are simply ignored.

6.2. re — Regular expression operations 123

The Python Library Reference, Release 3.11.0

(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov"'.

(?!...) Matchesif ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find a match in 'abcdef ', since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning that abc or a | b are allowed, but a* and a{3, 4}
are not. Note that patterns which start with positive lookbehind assertions will not match at the beginning of
the string being searched; you will most likely want to use the search () function rather than the match ()
function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'

This example looks for a word following a hyphen:

>>> m = re.search(r' (?<=-)\wt+', 'spam-egg')
>>> m.group (0)
leng

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—pattern|no—-pattern) Will try to match with yes-pattern if the group with given
id or name exists, and with no—pattern if it doesn’t. no—pattern is optional and can be omitted. For
example, (<) ? (\w+@\w+ (?:\.\w+)+) (? (1)>|$) isa poor email matching pattern, which will match
with '<user@host.com>" as well as 'user@host.com', but not with '<user@host.com' nor
'user@host.com>".

Deprecated since version 3.11: Group id containing anything except ASCII digits.

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII

digit or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character

A\l $ |l .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1 matches 'the the' or '55 55', but not 'thethe' (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit of number
is 0, or number is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal
value number. Inside the ' [' and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
word characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice
versa), or between \w and the beginning/end of the string. This means that r ' \bfoo\b"' matches ' foo"',
'foo."','(foo) ', '"bar foo baz' butnot 'foobar"' or 'foo3"'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by using
the ASCTT flag. Word boundaries are determined by the current locale if the LOCALFE flag is used. Inside a
character range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is not at the beginning or end of a word. This means that r ' py\B"'
matches 'python', 'py3', 'py2',butnot 'py"', 'py.',or '"py!'. \B is just the opposite of \b,
so word characters in Unicode patterns are Unicode alphanumerics or the underscore, although this can be

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

changed by using the ASCT T flag. Word boundaries are determined by the current locale if the LOCALE flag
is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character
category [Nd]). This includes [0—-9], and also many other digit characters. If the ASCIT flag is used
only [0-9] is matched.

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0—-9].

\D Matches any character which is not a decimal digit. This is the opposite of \d. If the ASCIT flag is used this
becomes the equivalent of [~0-9].

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v],
and also many other characters, for example the non-breaking spaces mandated by typography rules in
many languages). If the ASCIT flagisused, only [\t\n\r\£f\v] is matched.

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is
equivalent to [\t\n\r\f\v].

\S Matches any character which is not a whitespace character. This is the opposite of \'s. If the ASCI T flag is used
this becomes the equivalent of [~ \t\n\r\f\v].

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be part
of a word in any language, as well as numbers and the underscore. If the ASCIT flag is used, only
[a—zA-20-9_] is matched.

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalent to [a—zA-Z0-9_]. If the LOCALE flag is used, matches characters considered alphanu-
meric in the current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCIT flag is used
this becomes the equivalent of [~a-zA-720-9_]. If the LOCALE flag is used, matches characters which are
neither alphanumeric in the current locale nor the underscore.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\N \r \t \u
\U \v \x AR

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u', "\U',and '\N' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors.
Unknown escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits
in length.

Changed in version 3.3: The '\u"' and '\U"' escape sequences have been added.
Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.8: The ' \N{name} ' escape sequence has been added. As in string literals, it expands to the
named Unicode character (e.g. ' \N{EM DASH}").

6.2. re — Regular expression operations 125

The Python Library Reference, Release 3.11.0

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

Flags

Changed in version 3.6: Flag constants are now instances of RegexF'1ag, which is a subclass of enum. IntFlag.

class re.RegexFlag

re

re

re

re.

. IGNORECASE

re

re.

.A
.ASCII

I

L

An enum. IntF1ag class containing the regex options listed below.

New in version 3.11: -added to __all_

Make \w, \W, \b, \B, \d, \D, \'s and \'S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the inline flag
(?a).

Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and its
embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default for
strings (and Unicode matching isn’t allowed for bytes).

.DEBUG

Display debug information about compiled expression. No corresponding inline flag.

Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode
matching (such as U matching i) also works unless the re. ASCIT flag is used to disable non-ASCII matches.
The current locale does not change the effect of this flag unless the re . LOCALE flag is also used. Corresponds
to the inline flag (21).

Note that when the Unicode patterns [a—z] or [A-Z] are used in combination with the TGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: ‘I’ (U+0130, Latin capital letter I with
dot above), 1’ (U+0131, Latin small letter dotless i), ‘{” (U+017F, Latin small letter long s) and ‘K’ (U+212A,
Kelvin sign). If the ASCTT flag is used, only letters ‘a’ to ‘z’ and ‘A’ to “Z’ are matched.

re.LOCALE

re.M
re .MULTILINE

Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used
only with bytes patterns. The use of this flag is discouraged as the locale mechanism is very unreliable, it only
handles one “culture” at a time, and it only works with 8-bit locales. Unicode matching is already enabled by
default in Python 3 for Unicode (str) patterns, and it is able to handle different locales/languages. Corresponds
to the inline flag (?L).

Changed in version 3.6: re. LOCALE can be used only with bytes patterns and is not compatible with re.
ASCII.

Changed in version 3.7: Compiled regular expression objects with the re. LOCALE flag no longer depend on
the locale at compile time. Only the locale at matching time affects the result of matching.

When specified, the pattern character ' ~ ' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $' matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning

126

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

of the string, and '$"' only at the end of the string and immediately before the newline (if any) at the end of
the string. Corresponds to the inline flag (?m) .

re .NOFLAG

Indicates no flag being applied, the value is 0. This flag may be used as a default value for a function keyword
argument or as a base value that will be conditionally ORed with other flags. Example of use as a default value:

def myfunc (text, flag=re.NOFLAG) :
return re.match (text, flag)

New in version 3.11.

re.

re .DOTALL
Make the ' . ' special character match any character at all, including a newline; without this flag, ' . ' will
match anything except a newline. Corresponds to the inline flag (?s).

re.

re .VERBOSE
This flag allows you to write regular expressions that look nicer and are more readable by allowing you to
visually separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored,
except when in a character class, or when preceded by an unescaped backslash, or within tokens like *?, (?:
or (?P<...>. Forexample, (? : and * ? are not allowed. When a line contains a # that is not in a
character class and is not preceded by an unescaped backslash, all characters from the leftmost such # through
the end of the line are ignored.
This means that the two following regular expression objects that match a decimal number are functionally
equal:
a = re.compile(r"""\d + # the integral part

\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d*")
Corresponds to the inline flag (?x) .

Functions

re.compile (pattern, flags=0)

Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re. compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

6.2. re — Regular expression operations 127

The Python Library Reference, Release 3.11.0

re.search (pattern, string, flags=0)

Scan through string looking for the first location where the regular expression pattern produces a match, and
return a corresponding match object. Return None if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)

If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding
match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not
at the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re . fullmatch (pattern, string, flags=0)

If the whole string matches the regular expression pattern, return a corresponding match object. Return None
if the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)

Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits
occur, and the remainder of the string is returned as the final element of the list.

>>> re.split (r'\W+', 'Words, words, words.')
['"Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.',6 1)
["Words', 'words, words.']

>>> re.split('[a-f]+', '0a3B9', flags=re.IGNORECASE)
[ro', '3', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '...words, words...')
ey, '...'", 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

>>> re.split(r'\b', 'Words, words, words.')
(', 'words', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\wW*', '...words...")

[", l', Vw', VOV, YrV, YdV, ISY’ l', Vl}

>>> re.split(r' (\W*)', '...words...")

['l’ l-..’, l', 'l, lWI, 'l, IOl’ ll, lr', ll, ldl, 'l, ISI, '---'[IV, ll, '|j|

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

re.findall (pattern, string, flags=0)

Return all non-overlapping matches of pattern in string, as a list of strings or tuples. The string is scanned
left-to-right, and matches are returned in the order found. Empty matches are included in the result.

The result depends on the number of capturing groups in the pattern. If there are no groups, return a list of
strings matching the whole pattern. If there is exactly one group, return a list of strings matching that group.
If multiple groups are present, return a list of tuples of strings matching the groups. Non-capturing groups do
not affect the form of the result.

128

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

>>> re.findall (r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']

>>> re.findall (r' (\w+)=(\d+) "', 'set width=20 and height=10")

[('width', '20'), ('height', '10'")]

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)

Return an iferator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re . sub (pattern, repl, string, count=0, flags=0)

Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the
replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\ r is converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future
use and treated as errors. Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are
replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a—zA-Z_][a—-zA-Z_0-9]1*)\s*\ (\s*\):"',
r'static PyObject*\npy_\1 (void) \n{"',

c 'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :
if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro————-gram-files')
'pro——gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be
a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern
are replaced only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns
'—a-b--d-".

In string-type repl arguments, in addition to the character escapes and backreferences described above, \
g<name> will use the substring matched by the group named name, as defined by the (?P<name>...)
syntax. \g<number> uses the corresponding group number; \g<2> is therefore equivalent to \ 2, but isn’t
ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ' 0 '. The backreference \ g<0> substitutes in the entire
substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.7: Empty matches for the pattern are replaced when adjacent to a previous non-empty
match.

6.2. re — Regular expression operations 129

The Python Library Reference, Release 3.11.0

Deprecated since version 3.11: Group id containing anything except ASCII digits. Group names containing
non-ASCII characters in bytes replacement strings.

re . subn (pattern, repl, string, count=0, flags=0)

Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).
Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)

Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may have
regular expression metacharacters in it. For example:

>>> print (re.escape('https://www.python.org'))
https://www\.python\.org

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&"*+—-."_"[~:"
>>> print ('[]+" % re.escape(legal_chars))
[abcdefghijklmnopgrstuvwxyz0123456789 ! \#\S$2\ & "\ *\+\=\.\"_"\[\~:]1+

>>> operators = ['+', '=', '"*', v/v, vkxl]
>>> print ('|'.Jjoin (map (re.escape, sorted(operators, reverse=True))))

ZIN=INHINENF [\

This function must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'"), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_' character is no longer escaped.

Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As

aresult, "1, g M oy orr = v v@t and " " are no longer escaped.
re.purge ()

Clear the regular expression cache.

Exceptions

exception re.error (msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern. The error instance has the following additional
attributes:
msg

The unformatted error message.
pattern

The regular expression pattern.
pos

The index in pattern where compilation failed (may be None).
lineno

The line corresponding to pos (may be None).

130 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

colno

The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

Pattern.search (string[,pos[, endpos]])

Scan through string looking for the first location where this regular expression produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0.
This is not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from pos to endpos — 1 will be searched for a match. If endpos is less than
pos, no match will be found; otherwise, if 7x is a compiled regular expression object, rx . search (string,

0, 50) isequivalentto rx.search (string[:50], O0).

>>> pattern = re.compile("d")

>>> pattern.search ("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[, pos[, endpos]])

If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (string[, pos[, endpos]])

If the whole string matches this regular expression, return a corresponding match object. Return None if the
string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog
>>> pattern.fullmatch("ogre") # No match as not the full string matches.
>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.
<re.Match object; span=(1, 3), match='og'>

New in version 3.4.
Pattern.split (string, maxsplit=0)

Identical to the split () function, using the compiled pattern.
Pattern.findall (string[, pos[, endpos]])

Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

6.2. re — Regular expression operations 131

The Python Library Reference, Release 3.11.0

Pattern.finditer (string[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.sub (repl, string, count=0)

Identical to the sub () function, using the compiled pattern.
Pattern.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

Pattern.flags

The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags
in the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups
The number of capturing groups in the pattern.

Pattern.groupindex

A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern
The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added supportof copy . copy () and copy.deepcopy (). Compiled regular expression
objects are considered atomic.

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is
no match, you can test whether there was a match with a simple i £ statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

Match.expand (template)

Return the string obtained by doing backslash substitution on the template string template, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding

group.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ([groupl,])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.

(continues on next page)

132 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

(continued from previous page)

'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group (1, 2) # Multiple arguments give us a tuple.
('"Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings iden-
tifying groups by their group name. If a string argument is not used as a group name in the pattern, an In—
dexError exception is raised.

A moderately complicated example:

>>> m re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')

'Malcolm'

>>> m.group ('last_name')

'Reynolds'’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds'’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
lc3'

Match.__getitem__ (g)

This is identical to m. group (g) . This allows easier access to an individual group from a match:

>>> m = re.match(r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac’

>>> m[2] # The second parenthesized subgroup.
'Newton'

Named groups are supported as well:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Isaac Newton")
>>> m['first_name']
'Isaac'

>>> m['last_name']
'Newton'

New in version 3.6.

Match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argament is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m = re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '1632")

6.2. re — Regular expression operations 133

The Python Library Reference, Release 3.11.0

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.?2 (\d+)2", "24")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups('0") # Now, the second group defaults to '0'.
('24', '0")

Match.groupdict (default=None)

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ([group])
Match.end ([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,
and a group g that did contribute to the match, the substring matched by group g (equivalent tom. group (g))
is

m.string[m.start (g) :m.end(g)]

Note that m. start (group) will equal m.end (group) if group matched a null string. For example,
afterm = re.search('b(c?)', 'cba'),m.start(0)isl,m.end(0) is2, m.start (1) and
m.end (1) are both 2, and m. start (2) raises an TndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m = re.search("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]
'tony@tiger.net'

Match.span ([group])
For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

Match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the
index into the string beyond which the RE engine will not go.

Match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For example,
the expressions (a)b, ((a) (b)),and ((ab)) willhave lastindex == 1 if applied to the string 'ab"',
while the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

Match.re

The regular expression object whose match () or search () method produced this match instance.

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

Match.string

The string passed to match () or search ().

Changed in version 3.7: Added support of copy . copy () and copy.deepcopy (). Match objects are consid-
ered atomic.

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we’ll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: , groups=¢r>"' % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] S™)

>>> displaymatch (valid.match ("aktb5g")) # Valid.
"<Match: 'aktb5qg', groups=()>"

>>> displaymatch (valid.match ("aktbe")) # Invalid.
>>> displaymatch (valid.match("akt")) # Invalid.
>>> displaymatch(valid.match ("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, " 727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> palr = re.compile (r".*(.).*\1")

>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: '717', groups=('7',)>"

>>> displaymatch (pair.match ("718ak")) # No pairs.

>>> displaymatch (pair.match("354aa")) # Pair of aces.
"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

>>> pair = re.compile(r".*(.).*\1")
>>> pair.match("717ak") .group (1)
|7|

Error because re.match() returns None, which doesn't have a group() method:
>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match(r".*(.).*\1", "718ak") .group (1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)
lal

6.2. re — Regular expression operations 135

The Python Library Reference, Release 3.11.0

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression
3C .
$5¢ -{5}
%d [—+]2\d+
$e, $E, 3£, %g [—+172(\d+ \ \d*) 2 |\.\d+) ([eE] [-+]2\d+)?
[—+]
+]

(0 [\dA-Fa-f]+|0[0-7]*|\d+)

i ?
2 [0]+

[-

\S+
\d+
[-+]1?2(0[xX])?[\dA-Fa-f]+

o\
o

0]

o oo oo
[«

e
o\
bt

To extract the filename and numbers from a string like

’/usr/sbin/sendmail - 0 errors, 4 warnings ‘

you would use a scanf () format like

%$s — %d errors, %d warnings

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match () checks for a match
only at the beginning of the string, while re. search () checks for a match anywhere in the string (this is what
Perl does by default).

For example:

>>> re.match ("c", "abcdef") # No match
>>> re.search ("c", "abcdef™) # Match
<re.Match object; span=(2, 3), match='c'>

Regular expressions beginning with ' ~' can be used with search () to restrict the match at the beginning of the
string:

>>> re.match("c", "abcdef™) # No match
>>> re.search(""c", "abcdef") # No match
>>> re.search(""a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with ' ~ ' will match at the beginning of each line.

>>> re.match('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('"X', 'A\nB\nX', re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X"'>

136 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['"Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919 Park Place']]

The : 2 pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
R return m.group(l) + "".join(inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

6.2. re — Regular expression operations 137

The Python Library Reference, Release 3.11.0

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\wt+ly\b", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the
adverbs and their positions in some text, they would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\w+ly\b", text):

.. print (' - : ' % (m.start (), m.end(), m.group(0)))
07-16: carefully

40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ('\ ') in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match (r"\W(.)\1\w", " ££ ")

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W (.)\\I\\w", " ££ ™)
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string nota-
tion, this means r"\\". Without raw string notation, one must use "\ \ \\ ", making the following lines of code
functionally identical:

>>> re.match (r"\\", r"\\")
<re.Match object; span=(0, 1), match="\\"'>
>>> re.match ("\\\\", r"\\")
<re.Match object; span=(0, 1), match="\\"'>

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

from typing import NamedTuple
import re

class Token (NamedTuple) :
type: str
value: str
line: int
column: int

(continues on next page)

138 Chapter 6. Text Processing Services

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.11.0

(continued from previous page)

def tokenize (code) :
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [

("NUMBER', r'\d+(\.\d*)?"), # Integer or decimal number
("ASSIGN', r':="), # Assignment operator
('END', r';", # Statement terminator
('1D', r'[A-Za-z]+'"), # Identifiers
('op', r'[+\-*/1") # Arithmetic operators
("NEWLINE', <r'\n'"), # Line endings
('SKIP', r'[\tl+"), # Skip over spaces and tabs
("MISMATCH', r'."), # Any other character

]

tok_regex = '|'.join (' (?P<%s5>%s)' % pair for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup
value = mo.group ()

column = mo.start () - line_start
if kind == 'NUMBER':
value = float (value) if '.' in value else int (value)
elif kind == 'ID' and value in keywords:
kind = value
elif kind == 'NEWLINE':

line_start = mo.end()
line_num += 1

continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError (f'{value!/r} unexpected on line {line_num}')

yield Token (kind, value, line_num, column)

statements = "'’
IF quantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

Token (type="IF"', value='IF', line=2, column=4)

Token (type="'ID', value='quantity', line=2, column=7)
Token (type="'THEN', value='THEN', line=2, column=16)
Token (type="ID', value='total', line=3, column=8)
Token (type="ASSIGN', wvalue=':=', line=3, column=14)
Token (type="'ID', value='total', line=3, column=17)
Token (type="'0OP', value='+', line=3, column=23)

Token (type="'ID', value='price', line=3, column=25)
Token (type='0OP', value='*', line=3, column=31)

Token (type="ID'"', value='quantity', line=3, column=33)
Token (type="END', value=';', line=3, column=41)
Token (type="'ID', value='tax', line=4, column=8)
Token (type="ASSIGN', wvalue=':=', line=4, column=12)
Token (type="'ID', value='price', line=4, column=15)
Token (type="'0OP', value='*', line=4, column=21)

(continues on next page)

6.2. re — Regular expression operations 139

The Python Library Reference, Release 3.11.0

(continued from previous page)

Token (type="'NUMBER', value=0.05, line=4, column=23)
Token (type="END', value=';', line=4, column=27)
Token (type="ENDIF', wvalue='ENDIF', line=5, column=4)
Token (type="END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files,
and can produce information about file differences in various formats, including HTML and context and unified diffs.
For comparing directories and files, see also, the 71 1ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest
contiguous matching subsequence that contains no “junk” elements; these “junk” elements are ones that are
uninteresting in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff
and Obershelp algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left
and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to
yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain se-
quence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the aut o junk argument to False when creating the
SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ

This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMat cher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
v line common to both sequences
'? ' | line not present in either input sequence

Lines beginning with ‘2’ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

140 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.11/Lib/difflib.py

The Python Library Reference, Release 3.11.0

class difflib.HtmlDiff

This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init_ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Html1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndi £ () (used by Htm1Diff to
generate the side by side HTML differences). See ndi £ () documentation for argument default values
and descriptions.

The following methods are public:

make_file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-8")

Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set confext to True when contextual dif-
ferences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is False numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

Note: fromdesc and todesc are interpreted as unescaped HTML and should be properly escaped while
receiving input from untrusted sources.

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML doc-
ument changed from 'IS0O-8859-1"'to 'utf-8"'.

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

By default, the diff control lines (those with * ** or ———) are created with a trailing newline. This is helpful
so that inputs created from io. TOBase. readlines () result in diffs that are suitable for use with io.
IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineferm arguament to " " so that the output will be uniformly
newline free.

6.3. difflib — Helpers for computing deltas 141

The Python Library Reference, Release 3.11.0

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> 32 ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py', tofile=
—'after.py"'))

*** before.py

-—— after.py

kkhkkkkkkhkkkhkhkkKhKk kK

* K * 1,4 * K Kk Kk
! bacon

! eggs
! ham

! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired

(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; » must be greater than 0.

Optional argument cutoff (default 0 . 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches('appel', ['ape', 'apple', 'peach', 'puppy'l])
['apple', 'ape']

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple’', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

["except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Compare a and b (lists of strings); return a D1 f fe r-style delta (a generator generating the delta lines).
Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if not.
The default is None. There is also a module-level function 7S_LINE_JUNK (), which filters out lines with-
out visible characters, except for at most one pound character (' # ') — however the underlying Sequence—
Matcher class does a dynamic analysis of which lines are so frequent as to constitute noise, and this usually
works better than using this function.

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function 7.S_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py is acommand-line front-end to this function.

142

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
C. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

o A

ore

- two
- three

V]
|

+

tree
emu

+

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Di ffer.compare () or ndiff (), extract lines originating from file 1 or 2
(parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
C. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print (''.join(restore(diff, 1)), end="")

one

two

three

>>> print (''.join (restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")

Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in an inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This is
helpful so that inputs created from i0. TOBase. readlines () result in diffs that are suitable for use with
io.IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineterm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> 32 ['python\n', 'eggy\n', 'hamster\n', 'guido\n']
>>> sys.stdout.writelines (unified_diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

—-—— before.py

+++ after.py

@@ -1,4 +1,4 @@

—-bacon

-eggs

—ham

+python

teggy

(continues on next page)

6.3. difflib — Helpers for computing deltas 143

The Python Library Reference, Release 3.11.0

(continued from previous page)

+hamster

guido

See A command-line interface to difflib for a more detailed example.
difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3,
lineterm=b'\n")

Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format
returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except » must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The outputof dfunc is then converted
back to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (l/ine)

Return True for ignorable lines. The line line is ignorable if line is blank or contains a single ' # ', otherwise
it is not ignorable. Used as a default for parameter linejunk in ndi £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)

Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk="True)

Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument aufojunk can be used to disable the automatic junk heuristic.
New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2j is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is
reset with set_seqgs () or set_seqg2 ().

New in version 3.2: The bjunk and bpopular attributes.
SequenceMat cher objects have the following methods:

set_seqgs (a, b)
Set the two sequences to be compared.

144 Chapter 6. Text Processing Services

https://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
https://www.drdobbs.com/

The Python Library Reference, Release 3.11.0

SequenceMat cher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_segZ () to set the commonly used sequence once
and call set_seqgl () repeatedly, once for each of the other sequences.
set_seql (a)

Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo=0, ahi=None, blo=0, bhi=None)
Find longest matching block in a [alo:ahi] and b [blo:bhi].

If isjunk was omitted or None, find_longest_match () returns (i, j, k) suchthata [1:i+k]
isequaltob[j:j+k],wherealo <= i <= i+k <= ahiandblo <= j <= j+k <= bhi.
Forall (i', j', k') meeting those conditions, the additional conditions k >= k',i <= i',and
ifi == i',3 <= J' are also met. In other words, of all maximal matching blocks, return one that
starts earliest in a, and of all those maximal matching blocks that start earliest in a, return the one that
starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd™)
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from
matching the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can
match, and matches the leftmost ' abcd' in the second sequence:

>>> s = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match (0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).
Changed in version 3.9: Added default arguments.

get_matching_blocks ()

Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (1,
j, n),andmeansthata[i:1i+n] == b[j:Jj+n]. The triples are monotonically increasing in i and
J.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n
== 0.If (i, j, n)and (i', J', n') are adjacent triples in the list, and the second is not the
last triple in the list, then i+n < 1i' or j+n < Jj';in other words, adjacent triples always describe
non-adjacent equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching_blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()

Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, 1i2,
j1, j2). Thefirsttuplehas i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the
preceding tuple, and, likewise, j/ equal to the previous j2.

The fag values are strings, with these meanings:

6.3. difflib — Helpers for computing deltas 145

The Python Library Reference, Release 3.11.0

Value Meaning

'replace' | a[il1:12] should be replacedbyb[j1:32].

'delete' a[i1:12] should be deleted. Note that 1 == 72 in this case.

'insert' b[j1:732] should be insertedat a[11:11]. Note that i1 == 1i2 in this case.
'equal' alil:12] == b[jl:3j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, i1, i2, j1, Jj2 in s.get_opcodes():
print (' al : 1 ——> Db :] -——> '.format (
. tag, 11, i2, 31, j2, alil:i2], b[jl:321))
delete af[0:1] ——> b[0:0] 'q' > !
equal al[l:3] ——> b[0:2] 'ab' ——> 'ab'
replace af3:4] -——> b[2:3] x> Ty
equal afd4:6] ——> b[3:5] 'ed' ——> 'cd!
insert a[6:6] ——> b[5:6] B

get_grouped_opcodes (n=3)

Return a generator of groups with up to n lines of context.

Starting with the groups returned by get__opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().
ratio()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is
2.0*M/T. Note that this is 1 . 0 if the sequences are identical, and 0 . O if they have nothing in common.

This is expensive to compute if get_matching_blocks () or get_opcodes () hasn’t already
been called, in which case you may want to try quick_ratio () or real_quick_ratio () first
to get an upper bound.

Note: Caution: The result of a ratio () call may depend on the order of the arguments. For instance:

>>> SequenceMatcher (None, 'tide', 'diet').ratio()
0.25

>>> SequenceMatcher (None, 'diet', 'tide').ratio()
0.5

quick_ratio ()
Return an upper bound on ratio () relatively quickly.
real_quick_ratio()
Return an upper bound on ratio () very quickly.
The three methods that return the ratio of matching to total characters can give different results due to differing

levels of approximation, although quick_ratio () and real_qguick_ratio () are always at least as large as
ratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()
0.75

>>> s.quick_ratio ()

(continues on next page)

146 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

(continued from previous page)

0.75
>>> s.real_quick_ratio()
1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching _blocks () is handy:

>>> for block in s.get_matching blocks():

ce print ("al] and bl] match for elements" % block)
al[0] and b[0] match for 8 elements

al[8] and b[17] match for 21 elements

[29] and Db[38] match for 0 elements

o))

Note that the last tuple returned by get_matching_blocks () is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes():
.. print (" al : 1 bl : 1" % opcode)
equal af[0:8] b[0:8]

insert af[8:8] b[8:17]

equal al[8:29] b[17:38]

See also:

e The get_close_matches () function in this module which shows how simple code building on Se—
quenceMatcher can be used to do useful work.

» Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Di ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)

Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

6.3. difflib — Helpers for computing deltas 147

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.11.0

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or
characters to be ignored. Read the description of the find_longest_match () method’s isjunk parameter
for an explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).
Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists

of newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like
object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = "'' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.
. ''"1".splitlines (keepends=True)
>>> len (textl)
4
>>> textl1[0][-1]
'\D'
>>> text2 = ''' 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.
""" .splitlines (keepends=True)

Next we instantiate a Differ object:

>>> d = Differ ()

Note that when instantiating a Di fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n',

! 2. Explicit is better than implicit.\n',

' - 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n',

'— 4. Complex is better than complicated.\n',
V? A PR /\\nY,

'+ 4. Complicated is better than complex.\n',
' e+ N “\n',

'+ 5. Flat is better than nested.\n']

148 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

As a single multi-line string it looks like this:

>>> import sys
>>> sys.stdout.writelines (result)
1. Beautiful is better than ugly.
2. Explicit is better than implicit.
- 3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
2 el A
+ 4. Complicated is better than complex.
? ++++ N ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di £ £-like utility. It is also contained in the Python source distri-
bution, as Tools/scripts/diff.py.

#!/usr/bin/env python3
""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mn

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file_mtime (path):
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main () :

parser = argparse.ArgumentParser ()
parser.add_argument ('-c', action='store_true', default=False,
help='Produce a context format diff (default)"')
parser.add_argument ('-u', action='store_true', default=False,
help='Produce a unified format diff')
parser.add_argument ('-m', action='store_true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction) ')
parser.add_argument ('-n', action='store_true', default=False,
help='Produce a ndiff format diff')
parser.add_argument ('-1', '--lines', type=int, default=3,
help='Set number of context lines (default 3)"'")
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args()

n = options.lines
fromfile = options.fromfile

tofile = options.tofile

fromdate = file_mtime (fromfile)

(continues on next page)

6.3. difflib — Helpers for computing deltas 149

The Python Library Reference, Release 3.11.0

(continued from previous page)

todate = file_mtime (tofile)

with open (fromfile) as ff:
fromlines = ff.readlines|()

with open(tofile) as tf:
tolines = tf.readlines|()

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)

sys.stdout.writelines (diff)

if name_ == '_ _main___
main ()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does all
the work. If you're just wrapping or filling one or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, *, initial_indent="", subsequent_indent=", expand_tabs=True,
replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, placeholder="
[...])
Wraps the single paragraph in text (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (fext, width=70, *, initial_indent="", subsequent_indent=", expand_tabs=True,
replace_whitespace=True, fix_sentence_endings=False, break_long_words=True,
drop_whitespace=True, break_on_hyphens=True, tabsize=8, max_lines=None, placeholder="
[..]"
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. 111 () is
shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £i11 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (fext, width, *, fix_sentence_endings=False, break_long_words=True,
break_on_hyphens=True, placeholder="[...]")

Collapse and truncate the given fext to fit in the given width.

150 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.11/Lib/textwrap.py

The Python Library Reference, Release 3.11.0

First the whitespace in fext is collapsed (all whitespace is replaced by single spaces). If the result fits in the
width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus the
placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)

'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)

'Hello [...]"

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
Note that the whitespace is collapsed before the text is passed to the TextWrapper £i11 () function, so
changing the value of tabsize, expand_ tabs, drop_whitespace, and replace_whitespace
will have no effect.

New in version 3.4.

textwrap.dedent (fext)

Remove any common leading whitespace from every line in zext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello™" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the
output.

For example:

def test():
end first line with \ to avoid the empty line!
s = lvv\
hello
world
L B |
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (fext, prefix, predicate=None)

Add prefix to the beginning of selected lines in fext.
Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+

+

+ world

New in version 3.3.

6.4. textwrap — Text wrapping and filling 151

The Python Library Reference, Release 3.11.0

wrap (), £i111 () and shorten () work by creating a TextWrapper instance and calling a single method on
it. That instance is not reused, so for applications that process many text strings using wrap () and/or fi11 (), it
may be more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextiWrapper.break_long_words is set to false.
class textwrap.TextWrapper (**kwargs)

The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="* ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_indent = "*

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in fext will be expanded to spaces using the ex—
pandtabs () method of fext.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in fext will be expanded to zero or more
spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace

(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\£f\r").

Note: If expand tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace

(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before
indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ") String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line. The empty string is not indented.

152 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

subsequent_indent
(default: ' ') String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix_sentence_endings
(default: False)If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by oneof ' . ', ' ! ', or ' 2 ', possibly followed by oneof ' " ' or " ' ", followed
by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.”

m

’[...] Dr. Frankenstein's monster [...] ‘

and “Spot.” in

’[...] See Spot. See Spot run [...] ‘

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on st ring. lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is

specific to English-language texts.

break_long_words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which

width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_long_ words to false if you want truly inse-
cable words. Default behaviour in previous versions was to always allow breaking hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder

appearing at the end of the output.
New in version 3.4.

placeholder
(default: * [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:
wrap (fext)

Wraps the single paragraph in fext (a string) so every line is at most w1 dt h characters long. All wrapping

options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£i11 (zext)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.4. textwrap — Text wrapping and filling 153

The Python Library Reference, Release 3.11.0

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 14.0.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:
unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.
Changed in version 3.3: Support for name aliases' and named sequences’ has been added.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueFError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category (chr)

Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns 0 if no combining class
is defined.

unicodedata.east_asian_width (chr)

Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, O otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of
canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in various

! https://www.unicode.org/Public/14.0.0/ucd/NameAliases.txt
2 https://www.unicode.org/Public/14.0.0/ucd/NamedSequences. txt

154 Chapter 6. Text Processing Services

https://www.unicode.org/Public/14.0.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/
https://www.unicode.org/Public/14.0.0/ucd/NameAliases.txt
https://www.unicode.org/Public/14.0.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.11.0

way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be
expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility char-
acters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition,
followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining char-
acters and the other doesn’t, they may not compare equal.

unicodedata.is_normalized (form, unistr)

Return whether the Unicode string unistr is in the normal form form. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

New in version 3.8.
In addition, the module exposes the following constant:

unicodedata.unidata_version

The version of the Unicode database used in this module.

unicodedata.ued_3_2_0

This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET'")

v

>>> unicodedata.name ('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal('a"')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: not a decimal

>>> unicodedata.category ('A') # 'L'etter, 'u'ppercase

lLu'

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
IAN'

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

6.6. stringprep — Internet String Preparation 155

https://github.com/python/cpython/tree/3.11/Lib/stringprep.py

The Python Library Reference, Release 3.11.0

RF'C 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile
is nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code itself
was generated using the mkstringprep.py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns True
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.
stringprep.in_table_al (code)

Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3 (code)

Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).
stringprep.in_table_cl1 (code)

Determine whether code is in tableC.1.1 (ASCII space characters).
stringprep.in_table_cl2 (code)

Determine whether code is in tableC.1.2 (Non-ASCII space characters).
stringprep.in_table_cll_c12 (code)

Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).
stringprep.in_table_c21 (code)

Determine whether code is in tableC.2.1 (ASCII control characters).
stringprep.in_table_c22 (code)

Determine whether code is in tableC.2.2 (Non-ASCII control characters).
stringprep.in_table_c21_c22 (code)

Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).
stringprep.in_table_c3 (code)

Determine whether code is in tableC.3 (Private use).
stringprep.in_table_c4 (code)

Determine whether code is in tableC.4 (Non-character code points).
stringprep.in_table_c5 (code)

Determine whether code is in tableC.5 (Surrogate codes).
stringprep.in_table_c6 (code)

Determine whether code is in tableC.6 (Inappropriate for plain text).
stringprep.in_table_c7 (code)

Determine whether code is in tableC.7 (Inappropriate for canonical representation).
stringprep.in_table_c8 (code)

Determine whether code is in tableC.8 (Change display properties or are deprecated).

156 Chapter 6. Text Processing Services

https://datatracker.ietf.org/doc/html/rfc3454.html
https://datatracker.ietf.org/doc/html/rfc3454.html

The Python Library Reference, Release 3.11.0

stringprep.in_table_c9 (code)

Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)

Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)

Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly, or via the r1completer module, which supports
completion of Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of
both the interpreter’s interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . input rc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file,
and the capabilities of the Readline library in general.

Note: The underlying Readline library API may be implemented by the 1ibedit library instead of GNU readline.
On macOS the readline module detects which library is being used at run time.

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load configu-
ration strings you can check for the text “libedit” in readline.__doc___ to differentiate between GNU readline
and libedit.

If you use editline/1ibedit readline emulation on macOS, the initialization file located in your home directory
is named .editrc. For example, the following content in ~/ .editrc will turn ON vi keybindings and TAB
completion:

python:bind -v
python:bind "I rl_complete

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () in the underlying
library.

readline.read_init_file([ﬁlename])

Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7. readline — GNU readline interface 157

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.11.0

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer ()

Return the current contents of the line buffer (r1_1ine_buffer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying
library, but ignores the return value.

readline.redisplay ()

Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_file([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/ . history. This calls
read_history () in the underlying library.
readline.write_history_ file([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ .
history. Thiscalls write_history () in the underlying library.
readline.append_history_ file (nelements[, filename])

Append the last nelements items of history to a file. The default filename is ~/ . history. The file must
already exist. This calls append_history () in the underlying library. This function only exists if Python
was compiled for a version of the library that supports it.

New in version 3.5.

readline.get_history_length()
readline.set_history_length (length)

Set or return the desired number of lines to save in the history file. The write_history_file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying
library. Negative values imply unlimited history file size.

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function
only exists if Python was compiled for a version of the library that supports it.
readline.get_current_history_ length/()
Return the number of items currently in the history. (This is different from get_history_length (),
which returns the maximum number of lines that will be written to a history file.)
readline.get_history_item (index)
Return the current contents of history item at index. The item index is one-based. This calls his-
tory_get () in the underlying library.
readline.remove_history_item (pos)

Remove history item specified by its position from the history. The position is zero-based. This calls re-
move_history () in the underlying library.

158 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

readline.replace_history_item (pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls re-
place_history_entry () inthe underlying library.

readline.add_history (l/ine)
Append line to the history buffer, as if it was the last line typed. This calls add_history () inthe underlying
library.

readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () whenreading input via readline. The enabled argument
should be a Boolean value that when true, enables auto history, and that when false, disables auto history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ([ﬁmction])

Set or remove the function invoked by the r1_startup_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ([function])

Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already installed
is removed. The hook is called with no arguments after the first prompt has been printed and just before readline
starts reading input characters. This function only exists if Python was compiled for a version of the library
that supports it.

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used
by r1completer to complete Python identifiers for the interactive interpreter. If the readline module is to be
used with a custom completer, a different set of word delimiters should be set.

readline.set_completer ([function])

Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state),forswatein 0, 1, 2, ..., until it returns a non-string value. It should return the
next possible completion starting with fext.

The installed completer function is invoked by the entry_func callback passed to

rl_completion_matches () in the underlying library. The fext string comes from the first pa-

rameter to the r1_attempted_completion_function callback of the underlying library.
readline.get_completer ()

Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()

Get the type of completion being attempted. This returns the r1_completion_type variable in the un-
derlying library as an integer.

readline.get_begidx ()

6.7. readline — GNU readline interface 159

The Python Library Reference, Release 3.11.0

readline.get_endidx ()

Get the beginning or ending index of the completion scope. These indexes are the start and end arguments
passed to the r1_attempted_completion_function callback of the underlying library. The values
may be different in the same input editing scenario based on the underlying C readline implementation. Ex:
libedit is known to behave differently than libreadline.

readline.set_completer_delims (string)
readline.get_completer_delims ()

Set or get the word delimiters for completion. These determine the start of the word
to be considered for completion (the completion scope). These functions access the
rl_completer_word_break_characters variable in the underlying library.

readline.set_completion_display matches_hook ([function])

Set or remove the completion display function. If function is specified, it will be used as the new com-
pletion display function; if omitted or None, any completion display function already installed is re-
moved. This sets or clears the r1_completion_display_matches_hook callback in the underly-
ing library. The completion display function is called as function (substitution, [matches],
longest_match_length) once each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readl ine module’s history reading and writing functions to
automatically load and save a history file named . python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python history")
try:
readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length (1000)
except FileNotFoundError:
pass

atexit.register (readline.write_history_file, histfile)

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the
new history.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")

try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()
except FileNotFoundError:

open (histfile, 'wb').close()

h_len = 0

def save (prev_h_len, histfile):
new_h_len = readline.get_current_history_length()
readline.set_history_length(1000)

(continues on next page)

160 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.11.0

(continued from previous page)

readline.append_history_file(new_h_len - prev_h_len, histfile)
atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole) :

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole.__init__ (self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete")
if hasattr(readline, "read_ history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length(1000)
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The r1completer module defines a completion function suitable for the read i ne module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module available, an instance of the Com~—
pleter class is automatically created and its complete () method is set as the readline completer.

Example:

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline.___doc___ readline.get_line_buffer(readline.read_init_file(
readline._ file_ readline.insert_text (readline.set_completer (
readline._ _name_ readline.parse_and_bind(

>>> readline.

The r1completer module is designed for use with Python’s interactive mode. Unless Python is run with the —S
option, the module is automatically imported and configured (see Readline configuration).

On platforms without readl ine, the Completer class defined by this module can still be used for custom pur-
poses.

6.8. rlcompleter — Completion function for GNU readline 161

https://github.com/python/cpython/tree/3.11/Lib/rlcompleter.py

The Python Library Reference, Release 3.11.0

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)
Return the stateth completion for fext.

If called for fext that doesn’t include a period character (' . '), it will complete from names currently defined
in__main__, builtins and keywords (as defined by the ke yword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to __getattr__ ()) up to the last part, and find matches for the rest
via the dir () function. Any exception raised during the evaluation of the expression is caught, silenced and
None is returned.

162 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under Text Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, di f£11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types
memoryview.

bytes, bytearray,

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module performs conversions between Python values and C structs represented as Python byt es objects. This
can be used in handling binary data stored in files or from network connections, among other sources. It uses Format
Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that
the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle
platform-independent data formats or omit implicit pad bytes, use st andard size and alignment instead of native
size and alignment: see Byfe Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement
the bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose
are bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer
protocol, so that they can be read/filled without additional copying from a byt es object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:
exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

struct .pack (format, vi, v2,...)

Return a bytes object containing the values vI, v2, ... packed according to the format string format. The
arguments must match the values required by the format exactly.

163

https://github.com/python/cpython/tree/3.11/Lib/struct.py

The Python Library Reference, Release 3.11.0

struct .pack_into (format, buffer, offset, vi, v2,...)
Pack the values vI, v2, ... according to the format string format and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

struct .unpack (format, buffer)
Unpack from the buffer buffer (presumably packed by pack (format, ...))according to the format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize ().

struct .unpack_from (format, /, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even
if it contains exactly one item. The buffer’s size in bytes, starting at position offset, must be at least the size
required by the format, as reflected by calcsize ().

struct.iter_unpack (format, buffer)

Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the size required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calesize (format)

Return the size of the struct (and hence of the bytes object produced by pack (format, ...)) corre-
sponding to the format string format.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are
built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special
characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@ "' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; IBM z and most legacy architectures are big-endian; and ARM, RISC-V and IBM Power
feature switchable endianness (bi-endian, though the former two are nearly always little-endian in practice). Use
sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

164 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.0

Note the difference between '@' and '="': both use native byte order, but the size and alignment of the latter is
standardized.

The form ' ! ' represents the network byte order which is always big-endian as defined in IETF RFC 1700.
There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>"'.
Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the be-
ginning or the end of the encoded struct.

5 <3

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, *>’, ‘=, and ‘!.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts withone of '<', '>", ' ! ' or '=". When using native size, the size of the packed
value is platform-dependent.

Format | C Type Python type Standard size | Notes
X pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 (D), (2)
B unsigned char integer 1 2)
? _Bool bool 1 (1)
h short integer 2 2)
H unsigned short integer 2 2)
i int integer 4 2)
I unsigned int integer 4 2)
1 long integer 4 2)
L unsigned long integer 4 2)
q long long integer 8 2
0 unsigned long long | integer 8 2)
n ssize_t integer 3)
N size_t integer 3)
e 6) float 2 (Y]
f float float 4 @
d double float 8 “4)
S char[] bytes

P char([] bytes

P void* integer o)

Changed in version 3.3: Added support for the 'n"' and 'N' formats.
Changed in version 3.6: Added support for the 'e ' format.
Notes:

(1) The '? ' conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

(2) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Added use of the __index__ () method for non-integers.

7.1. struct — Interpret bytes as packed binary data 165

https://tools.ietf.org/html/rfc1700

The Python Library Reference, Release 3.11.0

(3) The 'n' and 'N' conversion codes are only available for the native size (selected as the default or with the
'@"' byte order character). For the standard size, you can use whichever of the other integer formats fits your
application.

(4) Forthe 'f£', 'd' and 'e"' conversion codes, the packed representation uses the IEEE 754 binary32, binary64
or binary16 format (for '£', 'd' or 'e' respectively), regardless of the floating-point format used by the
platform.

(5) The 'P' format character is only available for the native byte ordering (selected as the default or with the '@ "'
byte order character). The byte order character '=" chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the 'P ' format is not available.

(6) The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It
has a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers
between approximately 6.1e-05 and 6.5e+04 at full precision. This type is not widely supported by C
compilers: on a typical machine, an unsigned short can be used for storage, but not for math operations. See
the Wikipedia page on the half-precision floating-point format for more information.

A format character may be preceded by an integral repeat count. For example, the format string ' 4h ' means exactly
the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the 's ' format character, the count is interpreted as the length of the bytes, not a repeat count like for the other
format characters; for example, ' 10s ' means a single 10-byte string, while ' 1 0c ' means 10 characters. If a count
is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate to make
it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As a special case,
' 0s ' means a single, empty string (while ' 0c ' means O characters).

When packing a value x using one of the integer formats ('b', 'B', 'h', 'H', 'i','I",'1','L', 'q', 'Q"),
if x is outside the valid range for that format then st ruct . error is raised.

Changed in version 3.1: Previously, some of the integer formats wrapped out-of-range values and raised Depre—
cationWarning instead of st ruct.error.

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes
of the string follow. If the string passed in to pack () is too long (longer than the count minus 1), only the leading
count—1 bytes of the string are stored. If the string is shorter than count—1, it is padded with null bytes so that
exactly count bytes in all are used. Note that for unpack (), the 'p' format character consumes count bytes, but
that the string returned can never contain more than 255 bytes.

For the '?' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either O or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *

>>> pack('hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize('hhl")

8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

166 Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_754-2008_revision
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.11.0

>>> record = b'raymond \x32\x12\x08\x01\x08"'
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))
Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment require-
ments is different:

>>> pack('ci', b'*', 0x12131415)
b'*\x00\x00\x00\x12\x13\x14\x15"
>>> pack ('ic', 0x12131415, b'*")
b'\x12\x13\x14\x15*"

>>> calcsize('ci'")

8

>>> calcsize('ic'")

5

The following format ' 11h01 ' specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries:

>>> pack('11hO1"', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See also:
Module array Packed binary storage of homogeneous data.

Module xdr1ib Packing and unpacking of XDR data.

7.1.3 Classes

The st ruct module also defines the following type:

class struct.Struct (format)

Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling the st ruct functions with the same
format since the format string only needs to be compiled once.

Note: The compiled versions of the most recent format strings passed to St ruct and the module-level
functions are cached, so programs that use only a few format strings needn’t worry about reusing a single
Struct instance.

Compiled Struct objects support the following methods and attributes:

pack (vl, v2,...)

Identical to the pack () function, using the compiled format. (len (result) will equal size.)
pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)

Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must equal
size.

7.1. struct — Interpret bytes as packed binary data 167

The Python Library Reference, Release 3.11.0

unpack_£from (buffer, offset=0)

Identical to the unpack_from () function, using the compiled format. The buffer’s size in bytes,
starting at position offset, must be at least size.

iter_unpack (buffer)

Identical to the i ter_unpack () function, using the compiled format. The buffer’s size in bytes must
be a multiple of size.

New in version 3.4.

format

The format string used to construct this Struct object.
Changed in version 3.7: The format string type is now st r instead of bytes.
size

The calculated size of the struct (and hence of the bytes object produced by the pack () method) cor-
responding to format.

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry, which manages the codec and error handling lookup process. Most standard codecs
are fext encodings, which encode text to bytes (and decode bytes to text), but there are also codecs provided that
encode text to text, and bytes to bytes. Custom codecs may encode and decode between arbitrary types, but some
module features are restricted to be used specifically with rext encodings or with codecs that encode to by tes.

The module defines the following functions for encoding and decoding with any codec:

codecs . encode (0bj, encoding="utf-8', errors='strict')
Encodes obj using the codec registered for encoding.
Errors may be given to set the desired error handling scheme. The default error handleris ' strict ' meaning
that encoding errors raise ValueError (or a more codec specific subclass, such as UnicodeEncodeEr—
ror). Refer to Codec Base Classes for more information on codec error handling.

codecs .decode (0bj, encoding="utf-8', errors="'strict')
Decodes obj using the codec registered for encoding.
Errors may be given to set the desired error handling scheme. The default error handler is ' st rict ' meaning

that decoding errors raise Va lueError (or a more codec specific subclass, such as UnicodeDecodeEr—
ror). Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.
Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is

scanned. If no CodecInfo objectisfound, a LookupError israised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None,
incrementalencoder=None, incrementaldecoder=None, name=None)

Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the
same name:

168 Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.11/Lib/codecs.py

The Python Library Reference, Release 3.11.0

name

The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have the
same interface as the encode () and decode () methods of Codec instances (see Codec Interface).
The functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder

Incremental encoder and decoder classes or factory functions. These have to provide the interface defined
by the base classes TncrementalEncoder and IncrementalDecoder, respectively. Incremen-
tal codecs can maintain state.

streamwriter
streamreader

Stream writer and reader classes or factory functions. These have to provide the interface defined by the
base classes St reamiriter and St reamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use
lookup () for the codec lookup:

codecs.getencoder (encoding)

Look up the codec for the given encoding and return its encoder function.
Raises a LookupError in case the encoding cannot be found.

codecs .getdecoder (encoding)

Look up the codec for the given encoding and return its decoder function.
Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)

Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)

Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs .getreader (encoding)

Look up the codec for the given encoding and return its St reamReader class or factory function.
Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)

Look up the codec for the given encoding and return its St reamiriter class or factory function.
Raises a LookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)

Register a codec search function. Search functions are expected to take one argument, being the encoding
name in all lower case letters with hyphens and spaces converted to underscores, and return a CodecInfo
object. In case a search function cannot find a given encoding, it should return None.

Changed in version 3.9: Hyphens and spaces are converted to underscore.

7.2. codecs — Codec registry and base classes 169

The Python Library Reference, Release 3.11.0

codecs .unregister (search_function)
Unregister a codec search function and clear the registry’s cache. If the search function is not registered, do
nothing.

New in version 3.10.

While the builtin open () and the associated i o module are the recommended approach for working with encoded
text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs
when working with binary files:

codecs . open (filename, mode="r', encoding=None, errors='strict', buffering=- 1)

Open an encoded file using the given mode and return an instance of St reamReadeririter, providing
transparent encoding/decoding. The default file mode is ' r ', meaning to open the file in read mode.

Note: Underlying encoded files are always opened in binary mode. No automatic conversion of '\n' is
done on reading and writing. The mode argument may be any binary mode acceptable to the built-in open ()
function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes
from bytes is allowed, and the data types supported by the file methods depend on the codec used.

errors may be given to define the error handling. It defaults to ' strict ' which causes a ValueError to
be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to -1 which means that the
default buffer size will be used.

Changed in version 3.11: The 'U' mode has been removed.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors='strict’)
Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and
the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to 'strict', which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors='strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text st r objects to encode. Therefore it does not support bytes-
to-bytes encoders such as base64_codec.

codecs . iterdecode (iterator, encoding, errors='strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept byt es objects to decode. Therefore it does not support text-to-
text encoders such as rot_13, although rot_ 13 may be used equivalently with i terencode ().

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs .BOM

codecs .BOM_BE

codecs .BOM_LE

codecs .BOM_UTF8

170 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.0

codecs .BOM_UTF16
codecs .BOM_UTF16_BE
codecs.BOM_UTF16_LE
codecs.BOM_UTF32
codecs.BOM_UTF32_BE
codecs.BOM_UTF32_LE

These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encod-
ings. They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-8 as
a Unicode signature. BOM_UTF 16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the plat-
form’s native byte order, BOM is an alias for BOM_UTF'16, BOM_LE for BOM_UTF16_LE and BOM_BE for
BOM_UTF16_BE. The others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and
can also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols. Codec authors also need to define how the codec will handle encoding and decoding
errors.

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument:

>>> 'German B, #'.encode(encoding='ascii', errors='backslashreplace')
b'German \\xdf, \\u266c’

>>> 'German B, &'.encode(encoding='ascii', errors='xmlcharrefreplace')
b'German ß, ♬"'

The following error handlers can be used with all Python Standard Encodings codecs:

Value Meaning

'strict’ Raise UnicodeError (or a subclass), this is the default. Implemented in
strict_errors().

'ignore' Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().

'replace’ Replace with a replacement marker. On encoding, use ? (ASCII character). On

decoding, use € (U+FFFD, the official REPLACEMENT CHARACTER).
Implemented in replace_errors ().

'backslashreplace' | Replace with backslashed escape sequences. On encoding, use hexadecimal form
of Unicode code point with formats \ xhh \uxxxx \Uxxxxxxxx. On
decoding, use hexadecimal form of byte value with format \ xhh. Implemented
in backslashreplace_errors ().

'surrogateescape' On decoding, replace byte with individual surrogate code ranging from U+DC80
to U+DCFF. This code will then be turned back into the same byte when the
'surrogateescape' error handler is used when encoding the data. (See
PEP 383 for more.)

The following error handlers are only applicable to encoding (within fext encodings):

7.2. codecs — Codec registry and base classes 171

https://peps.python.org/pep-0383/

The Python Library Reference, Release 3.11.0

Value Meaning

'xmlchar- | Replace with XML/HTML numeric character reference, which is a decimal form of Unicode
refre- code point with format & #num; Implemented in xmIcharrefreplace _errors().
place'’

'namere-— Replace with \N{ . ..} escape sequences, what appears in the braces is the Name property
place’ from Unicode Character Database. Implemented in namereplace_errors ().

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning

'sur-— utf-8, utf-16, utf-32, | Allow encoding and decoding surrogate code point (U+D800 - U+DFFF)
ro- utf-16-be, utf-16-le, | as normal code point. Otherwise these codecs treat the presence of sur-
gatepasisttf-32-be, utf-32-le rogate code point in st r as an error.

New in version 3.1: The 'surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The ' surrogatepass' error handler now works with utf-16* and utf-32* codecs.
New in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace' error handler now works with decoding and translating.
The set of allowed values can be extended by registering a new named error handler:

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains infor-
mation about the location of the error. The error handler must either raise this or a different exception, or
return a tuple with a replacement for the unencodable part of the input and a position where encoding should
continue. The replacement may be either st or bytes. If the replacement is bytes, the encoder will simply
copy them into the output buffer. If the replacement is a string, the encoder will encode the replacement.
Encoding continues on original input at the specified position. Negative position values will be treated as being
relative to the end of the input string. If the resulting position is out of bound an TndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or UnicodeTranslateEr—
ror will be passed to the handler and that the replacement from the error handler will be put into the output
directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.
The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)
Implements the 'strict' error handling.

Each encoding or decoding error raises a UnicodeError.

codecs.ignore_errors (exception)
Implements the ' ignore' error handling.

Malformed data is ignored; encoding or decoding is continued without further notice.

codecs.replace_errors (exception)
Implements the ' replace' error handling.

Substitutes ? (ASCII character) for encoding errors or € (U+FFFD, the official REPLACEMENT CHAR-
ACTER) for decoding errors.

172 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.0

codecs .backslashreplace_errors (exception)

Implements the 'backslashreplace' error handling.

Malformed data is replaced by a backslashed escape sequence. On encoding, use the hexadecimal form of
Unicode code point with formats \xhh \uxxxx \Uxxxxxxxx. On decoding, use the hexadecimal form of
byte value with format \ xhh.

Changed in version 3.5: Works with decoding and translating.

codecs.xmlcharrefreplace_errors (exception)

Implements the 'xmlcharrefreplace’ error handling (for encoding within fext encoding only).

The unencodable character is replaced by an appropriate XML/HTML numeric character reference, which is
a decimal form of Unicode code point with format & #num; .

codecs.namereplace_errors (exception)

Implements the 'namereplace’ error handling (for encoding within fext encoding only).

The unencodable character is replaced by a \N{ . . . } escape sequence. The set of characters that appear in
the braces is the Name property from Unicode Character Database. For example, the German lowercase letter
'3 " will be converted to byte sequence \N{LATIN SMALL LETTER SHARP S}.

New in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:
Codec .encode (input, errors='strict’)

Encodes the object input and returns a tuple (output object, length consumed). For instance, text encod-
ing converts a string object to a bytes object using a particular character set encoding (e.g., cp1252 or
is0-8859-1).

The errors argument defines the error handling to apply. It defaults to ' strict ' handling.

The method may not store state in the Codec instance. Use St reamir iter for codecs which have to keep
state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

Codec .decode (input, errors='strict’)

Decodes the object input and returns a tuple (output object, length consumed). For instance, for a text encoding,
decoding converts a bytes object encoded using a particular character set encoding to a string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the read-only
buffer interface — for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to keep
state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

7.2. codecs — Codec registry and base classes 173

The Python Library Reference, Release 3.11.0

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremen-
tal encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode ()/decode () method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode ()/decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.
class codecs.IncrementalEncoder (errors='strict')

Constructor for an TncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it
possible to switch between different error handling strategies during the lifetime of the TncrementalEn—
coder object.
encode (object, final=False)
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).
reset ()
Reset the encoder to the initial state. The output is discarded: call .encode (object, fi-
nal=True), passing an empty byte or text string if necessary, to reset the encoder and to get the
output.
getstate ()

Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into
an integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer.)

setstate (state)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects

The ITncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder (errors='strict')

Constructor for an TncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The TncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

174 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.0

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it

possible to switch between different error handling strategies during the lifetime of the TncrementalDe—

coder object.

decode (object, final=False)
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()

Reset the decoder to the initial state.

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that O is the most common additional state info.) If this
additional state info is O it must be possible to set the decoder to the state which has no input buffered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns it
to the previous state without producing any output. (Additional state info that is more complicated than
integers can be converted into an integer by marshaling/pickling the info and encoding the bytes of the
resulting string into an integer.)
setstate (state)

Set the state of the decoder to state. state must be a decoder state returned by getstate ().

Stream Encoding and Decoding

The Streamiiriter and St reamReader classes provide generic working interfaces which can be used to im-
plement new encoding submodules very easily. See encodings.ut f_8 for an example of how this is done.

StreamWriter Objects

The StreamiWriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.
class codecs.StreamWriter (stream, errors='strict')

Constructor for a St reamliri t er instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the
specific codec.

The St reamwriter may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between different error handling strategies during the lifetime of the St reamWriter
object.

write (object)

Writes the object’s contents encoded to the stream.

writelines (list)

Writes the concatenated iterable of strings to the stream (possibly by reusing the write () method).
Infinite or very large iterables are not supported. The standard bytes-to-bytes codecs do not support this
method.

7.2. codecs — Codec registry and base classes 175

The Python Library Reference, Release 3.11.0

reset ()

Resets the codec buffers used for keeping internal state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, the St reamiriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors='strict')

Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the
specific codec.

The St reamReader may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between different error handling strategies during the lifetime of the St reamReader
object.

The set of allowed values for the errors argument can be extended with register error ().

read (size=- 1, chars=- 1, firstline=False)

Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read () method
will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read
for decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read
and decode as much as possible. This parameter is intended to prevent having to decode huge files in one
step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within
the definition of the encoding and the given size, e.g. if optional encoding endings or state markers are
available on the stream, these should be read too.

readline (size=None, keepends=True)

Read one line from the input stream and return the decoded data.
size, if given, is passed as size argument to the stream’s read () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines (sizehint=None, keepends=True)

Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decode () method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

176

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.0

reset ()

Resets the codec buffers used for keeping internal state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

StreamReaderWriter Objects

The St reamReaderWriter is a convenience class that allows wrapping streams which work in both read and
write modes.

The design is such that one can use the factory functions returned by the 1 ocokup () function to construct the instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors='strict’)

Creates a St reamReaderriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamiriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of St reamReader and StreamWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the 7 ook up () function to construct the instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors='strict’)

Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend — the data visible to code calling read () and write (), while Reader and Writer work on the
backend — the data in stream.

You can use these objects to do transparent transcodings, e.g., from Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory
functions or classes providing objects of the St reamReader and St reamiriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamiriter classes.
They inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range U+0000-U+10FFFF. (See PEP 393 for more
details about the implementation.) Once a string object is used outside of CPU and memory, endianness and how
these arrays are stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is
known as encoding, and recreating the string from the sequence of bytes is known as decoding. There are a variety
of different text serialisation codecs, which are collectivity referred to as fext encodings.

The simplest text encoding (called 'latin—-1" or 'iso-8859-1") maps the code points 0-255 to the bytes
0x0-0xf f, which means that a string object that contains code points above U+00FF can’t be encoded with this
codec. Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the

7.2. codecs — Codec registry and base classes 177

https://peps.python.org/pep-0393/

The Python Library Reference, Release 3.11.0

error message may differ): UnicodeEncodeError: 'latin-1' codec can't encode character
'\ul234' in position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0-0x £ £. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant
with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straight-
forward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are
two possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE
and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF—-32-BE on a little endian machine
you will always have to swap bytes on encoding and decoding. UTF—32 avoids this problem: bytes will always be in
natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF—16 or UTF-32 byte sequence, there’s the so called BOM
(“Byte Order Mark™). This is the Unicode character U+FEFF. This character can be prepended to every UTF-16
or UTF-32 byte sequence. The byte swapped version of this character (0xFFFE) is an illegal character that may
not appear in a Unicode text. So when the first character in a UTF-16 or UTF—-32 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately the character U+FEFF had a second purpose as
a ZERO WIDTH NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can
e.g. be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK
SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software
still must be able to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the
encoded bytes, and vanishes once the byte sequence has been decoded into a string; as a ZERO WIDTH NO-BREAK
SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encode the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding
U-00000000 ... U-0000007F | OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XXXXXX

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the
first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8
byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a
UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python calls "ut £-8-sig") for its
Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks
like this as a byte sequence: Oxef, Oxbb, 0xbf) is written. As it’s rather improbable that any charmap encoded
file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in 1s0-8859-1), this increases the probability that a ut £-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence,
but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxef, 0xbb,
Oxbf as the first three bytes to the file. On decoding ut £-8-sig will skip those three bytes if they appear as the
first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

178 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.0

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. 'utf£-8"' isavalid alias for the 'ut£_8"' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve
performance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive)
aliases: utf-8, utf8, latin-1, latin1, is0-8859-1, is08859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-32,
utf32, and the same using underscores instead of dashes. Using alternative aliases for these encodings may result in
slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

e an ISO 8859 codeset

* a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control char-
acters with additional graphic characters

¢ an IBM EBCDIC code page
 an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5Shkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, 1BM273, csIBM273 German
New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM857 Turkish
cp858 858, IBM858 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM&65 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai

continues on next page

7.2. codecs — Codec registry and base classes

179

The Python Library Reference, Release 3.11.0

Table 1 - continued from previous page

Codec Aliases Languages
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cpl1006 Urdu
cpl026 ibm1026 Turkish
cpll25 1125, ibm1125, cp866u, ruscii Ukrainian
New in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 Jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c- | Korean

5601, ks_c-5601-1987, ksx1001,

ks_x-1001
gb2312 chinese, csis058gb231280, euc- | Simplified Chinese

cn, euccn, eucgb2312-cn, gb2312-

1980, gb2312-80, iso-ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
1502022_jp ¢sis02022]jp, 1502022 jp, is0-2022- | Japanese

Jp
1502022_jp_1 1502022jp-1, is0-2022-jp-1 Japanese

i502022_jp_2

i502022jp-2, i50-2022-p-2

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek

i502022_jp_2004

i502022jp-2004,
2004

is0-2022-jp-

Japanese

1502022 _jp_3 1802022jp-3, is0-2022-jp-3 Japanese
1502022 _jp_ext 1802022 jp-ext, is0-2022-jp-ext Japanese
1502022 _kr ¢sis02022kr, is02022kr, is0-2022- | Korean
kr
latin_1 is0-8859-1, is08859-1, 8859, | Western Europe
cp819, latin, latinl, L1
1508859_2 150-8859-2, latin2, L2 Central and Eastern Europe
1s08859_3 180-8859-3, latin3, L3 Esperanto, Maltese
1508859_4 150-8859-4, latind, L4 Baltic languages
1508859_5 150-8859-5, cyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
1508859_6 150-8859-6, arabic Arabic
1508859_7 150-8859-7, greek, greek8 Greek
1508859_8 180-8859-8, hebrew Hebrew
1508859_9 150-8859-9, latin5, L5 Turkish
1508859_10 150-8859-10, latin6, L6 Nordic languages

continues on next page

180

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.11.0

Table 1 - continued from previous page

Codec Aliases Languages
1s08859_11 1s0-8859-11, thai Thai languages
1508859_13 180-8859-13, latin7, L7 Baltic languages
1s08859_14 1s0-8859-14, latin8, L8 Celtic languages
1508859_15 150-8859-15, latin9, L9 Western Europe
1508859_16 1s0-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8 r Russian
koi8_t Tajik
New in version 3.5.
koi8_u Ukrainian
kz1048 kz_1048, strk1048_2002, tk1048 | Kazakh
New in version 3.5.
mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope, | Central and Eastern Europe
mac_centeuro
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptcpl54 csptepl54, pt154, cpl54, cyrillic- | Kazakh
asian
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, | Japanese
s_jisx0213
utf_32 U32, utf32 all languages
utf_32 _be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf_16 Ul16, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8, cp65001 all languages
utf_8_sig all languages

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800—U+DFFF)
to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code points.

Changed in version 3.8: cp65001 is now an alias to ut £_8.

7.2. codecs — Codec registry and base classes 181

The Python Library Reference, Release 3.11.0

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the
most common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than
just text encodings). For asymmetric codecs, the stated meaning describes the encoding direction.

Text Encodings

The following codecs provide st r to bytes encoding and bytes-like object to st r decoding, similar to the Unicode
text encodings.

Codec Aliases Meaning

idna Implement RFC 3490, see also
encodings.idna. Only er—
rors="strict"' is supported.
mbcs ansi, dbcs Windows only: Encode the
operand according to the ANSI
codepage (CP_ACP).

oem Windows only: Encode the
operand according to the OEM
codepage (CP_OEMCP).

New in version 3.6.

palmos Encoding of PalmOS 3.5.

punycode Implement RFC 3492. Stateful
codecs are not supported.

raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are
not escaped in any way. It is used
in the Python pickle protocol.
undefined Raise an exception for all conver-
sions, even empty strings. The er-
ror handler is ignored.
unicode_escape Encoding suitable as the contents
of a Unicode literal in ASCII-
encoded Python source code, ex-
cept that quotes are not escaped.
Decode from Latin-1 source code.
Beware that Python source code
actually uses UTF-8 by default.

Changed in version 3.8: “unicode_internal” codec is removed.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to byt es mappings. They are not supported by
bytes.decode () (which only produces st r output).

182 Chapter 7. Binary Data Services

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html

The Python Library Reference, Release 3.11.0

Codec Aliases Meaning Encoder / decoder
base64_codec! | base64, Convert the operand to multiline MIME base64 (the base64.
base_64 result always includes a trailing ' \n"). encodebytes () /
Changed in version 3.4: accepts any bytes-like object | base64.
as input for encoding and decoding decodebytes ()
bz2_codec bz2 Compress the operand using bz2. bz2.compress ()
I bz2.
decompress ()
hex_codec hex Convert the operand to hexadecimal representation, binascii.
with two digits per byte. b2a_hex () /
binascii.
a’b_hex ()
quopri_codec quopri, Convert the operand to MIME quoted printable. quopri.
quoted- encode () with
printable, quotetabs=True
quoted_printable / quopri.
decode ()
uu_codec uu Convert the operand using uuencode. uu.encode () /
uu.decode ()
zlib_codec zip, zlib Compress the operand using gzip. z1lib.
compress () /
z1ib.
decompress ()

New in version 3.2: Restoration of the binary transforms.
Changed in version 3.4: Restoration of the aliases for the binary transforms.
Text Transforms

The following codec provides a text transform: a st r to str mapping. It is not supported by str.encode ()
(which only produces by tes output).

Codec
rot_13

Aliases
rotl3

Meaning
Return the Caesar-cypher encryption of the operand.

New in version 3.2: Restoration of the rot__ 13 text transform.

Changed in version 3.4: Restoration of the rot 13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

If you need the IDNA 2008 standard from RFC 5891 and RFC 5895, use the third-party idna module.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name con-
taining non-ASCII characters (such as www.Alliancefrang¢aise.nu) is converted into an ASCII-compatible
encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is
then used in all places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host
fields, and so on. This conversion is carried out in the application; if possible invisible to the user: The application
should transparently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode
before presenting them to the user.

! In addition to bytes-like objects, 'base64_codec" also accepts ASCII-only instances of st r for decoding

7.2. codecs — Codec registry and base classes 183

https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3492.html
https://datatracker.ietf.org/doc/html/rfc5891.html
https://datatracker.ietf.org/doc/html/rfc5895.html
https://pypi.org/project/idna/

The Python Library Reference, Release 3.11.0

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently con-
verts Unicode host names to ACE, so that applications need not be concerned about converting host names themselves
when they pass them to the socket module. On top of that, modules that have host names as function parameters,
such as http.client and ftplib, accept Unicode host names (http.client then also transparently sends
an IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The
nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)

Return the nameprepped version of label. The implementation currently assumes query strings, so A1lowU—
nassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

This module implements the ANSI codepage (CP_ACP).
Availability: Windows.
Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; ' replace' was always used to encode, and
"ignore' to decode.

7.2.7 encodings.utf_8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec. On encoding, a UTF-8 encoded BOM will be prepended to
the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). On
decoding, an optional UTF-8 encoded BOM at the start of the data will be skipped.

184 Chapter 7. Binary Data Services

https://datatracker.ietf.org/doc/html/rfc3490.html#section-3.1
https://datatracker.ietf.org/doc/html/rfc3490.html
https://datatracker.ietf.org/doc/html/rfc3490.html

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, double-ended queues, and enumerations.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset,and tuple. The
str class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datet ime module supplies classes for manipulating dates and times.

While date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for
output formatting and manipulation.

See also:

Module calendar General calendar related functions.

Module time Time access and conversions.

Module zoneinfo Concrete time zones representing the IANA time zone database.

Package dateutil Third-party library with expanded time zone and parsing support.

8.1.1 Aware and Naive Objects

Date and time objects may be categorized as “aware” or “naive” depending on whether or not they include timezone
information.

With sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone and daylight
saving time information, an aware object can locate itself relative to other aware objects. An aware object represents
a specific moment in time that is not open to interpretation. '

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other timezone is
purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or
mass. Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datet ime and time objects have an optional time zone information
attribute, t zinfo, that can be set to an instance of a subclass of the abstract ¢ zinfo class. These t zinfo objects
capture information about the offset from UTC time, the time zone name, and whether daylight saving time is in
effect.

LIf, that is, we ignore the effects of Relativity

185

https://github.com/python/cpython/tree/3.11/Lib/datetime.py
https://dateutil.readthedocs.io/en/stable/

The Python Library Reference, Release 3.11.0

Only one concrete t zinfo class, the t imezone class, is supplied by the datet ime module. The t imezone
class can represent simple timezones with fixed offsets from UTC, such as UTC itself or North American EST and
EDT timezones. Supporting timezones at deeper levels of detail is up to the application. The rules for time adjust-
ment across the world are more political than rational, change frequently, and there is no standard suitable for every
application aside from UTC.

8.1.2 Constants

The datet ime module exports the following constants:

datetime .MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEARIS 1.

datetime .MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEAR s 9999.

datetime.UTC
Alias for the UTC timezone singleton datetime. timezone. utc.

New in version 3.11.

8.1.3 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds.
(There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second, mi—
crosecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo

An abstract base class for time zone information objects. These are used by the datet ime and t ime classes
to provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight
saving time).

class datetime.timezone

A class that implements the t zinfo abstract base class as a fixed offset from the UTC.
New in version 3.2.
Objects of these types are immutable.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

186 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

Common Properties

The date, datetime, t ime, and t imezone types share these common features:

* Objects of these types are immutable.

¢ Objects of these types are hashable, meaning that they can be used as dictionary keys.

* Objects of these types support efficient pickling via the pi ck 1e module.

Determining if an Object is Aware or Naive

Objects of the date type are always naive.
An object of type t ime or datet ime may be aware or naive.
A datet ime object d is aware if both of the following hold:

1. d.tzinfo is not None

2. d.tzinfo.utcoffset (d) does not return None
Otherwise, d is naive.
A time object t is aware if both of the following hold:

1. t.tzinfo is not None

2. t.tzinfo.utcoffset (None) does not return None.
Otherwise, ¢ is naive.

The distinction between aware and naive doesn’t apply to t imedelta objects.

8.1.4 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0, hours=0,

weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or

negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

¢ A millisecond is converted to 1000 microseconds.
¢ A minute is converted to 60 seconds.
¢ An hour is converted to 3600 seconds.

* A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

* 0 <= microseconds < 1000000
e 0 <= seconds < 3600%*24 (the number of seconds in one day)

¢ -999999999 <= days <= 999999999

The following example illustrates how any arguments besides days, seconds and microseconds are “merged”

and normalized into those three resulting attributes:

8.1. datetime — Basic date and time types

187

The Python Library Reference, Release 3.11.0

>>> from datetime import timedelta
>>> delta = timedelta(

days=50,

seconds=27,

microseconds=10,

milliseconds=29000,

minutes=5,

hours=8,

weeks=2

)

>>> # Only days, seconds, and microseconds remain
>>> delta
datetime.timedelta (days=64, seconds=29156, microseconds=10)

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization processes are exact (no information is
lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example:

>>> from datetime import timedelta

>>> d = timedelta (microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(=1, 86399, 999999)

Class attributes:

timedelta.min

The most negative t imedelta object, timedelta (-999999999).

timedelta.max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,

timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. —timedelta.max is not rep-
resentable as a t imedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between 0 and 999999 inclusive

Supported operations:

188 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

Operation Result

tl = t2 + t3 Sum of 12 and £3. Afterwards /-2 == t3 and t/-13 == 12 are true. (1)

tl = t2 - t3 Difference of 12 and 3. Afterwards ¢t/ == 2 - t3 and 12 == tI + ¢3 are true. (1)(6)

tl = t2 * i or tl | Delta multiplied by an integer. Afterwards ¢/ // i ==12 is true, provided 1 != 0.

=1 * t2
In general, ¢t/ *i==1tl * (i-1) + ¢1 is true. (1)

tl = t2 * £ or tl | Delta multiplied by a float. The result is rounded to the nearest multiple of

= f * t2 timedelta.resolution using round-half-to-even.

f=1t2 / t3 Division (3) of overall duration #2 by interval unit 3. Returns a £1oat object.

tl = t2 / £ or tl | Delta divided by a float or an int. The result is rounded to the nearest multiple of

=t2 /1 timedelta.resolution using round-half-to-even.

tl = t2 // 1iortl | Theflooriscomputed and the remainder (if any) is thrown away. In the second case,

=t2 // t3 an integer is returned. (3)

tl = t2 % t3 The remainder is computed as a t imedelta object. (3)

q, r = divmod(tl, | Computes the quotient and the remainder: g = t1 // t2@3)andr = tl %

t2) t2. qisaninteger and ris a t imedelta object.

+t1 Returns a t imedelta object with the same value. (2)

-t1 equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds), and to t1* -1.
(O[]

abs (t) equivalent to +7 when t .days >= 0,andto-fwhent.days < 0. (2)

str(t) Returns a string in the form [D day([s],][H]H:MM:SS[.UUUUUU], where
D is negative for negative t. (5)

repr (t) Returns a string representation of the t imede 1t a object as a constructor call with
canonical attribute values.

Notes:

(1) This is exact but may overflow.

(2) This is exact and cannot overflow.

(3) Division by O raises ZeroDivisionError

(4) -timedelta.max is not representable as a t imede 1 ta object.

(5) String representations of timedelta objects are normalized similarly to their internal representation. This
leads to somewhat unusual results for negative timedeltas. For example:

>>> print (_)
-1 day,

19:00:00

>>> timedelta (hours=-5)
datetime.timedelta (days=-1,

seconds=68400)

(6) The expression t2 - t3 will always be equal to the expression t2 +

(-t 3) except when t3 is equal to

timedelta.max;in that case the former will produce a result while the latter will overflow.

In addition to the operations listed above, t imede 1t a objects support certain additions and subtractions with date
and datet ime objects (see below).

Changed in version 3.2: Floor division and true division of a t imedelta object by another t imedelta object
are now supported, as are remainder operations and the divmod () function. True division and multiplication of a
timedelta object by a f1loat object are now supported.

Comparisons of t imedelta objects are supported, with some caveats.

The comparisons == or ! = always return a boo 1, no matter the type of the compared object:

>>>

from datetime import timedelta

>>> deltal = timedelta (seconds=57)

>>> delta2 = timedelta (hours=25,
|

>>> delta2 != deltal

seconds=2)

(continues on next page)

8.1. datetime — Basic date and time types

189

The Python Library Reference, Release 3.11.0

(continued from previous page)

True
>>> delta2 ==
False

For all other comparisons (such as < and >), when a t imede 1t a object is compared to an object of a different type,
TypeError is raised:

>>> delta2 > deltal
True
>>> delta2 > 5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '>' not supported between instances of 'datetime.timedelta' and 'int'

In Boolean contexts, a t imede 1t a object is considered to be true if and only if it isn’t equal to t imedelta (0).
Instance methods:

timedelta.total_seconds ()

Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1). For interval units other than seconds, use the division form directly
(e.g. td / timedelta (microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose mi-
crosecond accuracy.

New in version 3.2.

Examples of usage: timedelta

An additional example of normalization:

>>> # Components of another_year add up to exactly 365 days

>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,
minutes=50, seconds=600)

>>> year == another_year
True

>>> year.total_seconds ()
31536000.0

Examples of timedelta arithmetic:

>>> from datetime import timedelta
>>> year = timedelta (days=365)

>>> ten_years = 10 * year

>>> ten_years

datetime.timedelta (days=3650)

>>> ten_years.days // 365

10

>>> nine_years = ten_years - year
>>> nine_years

datetime.timedelta (days=3285)

>>> three_years = nine_years // 3
>>> three_years, three_years.days // 365
(datetime.timedelta (days=1095), 3)

190 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

8.1.5 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions.

January 1 of year 1 is called day number 1, January 2 of year 1 is called day number 2, and so on.”

class datetime.date (year, month, day)

All arguments are required. Arguments must be integers, in the following ranges:
¢ MINYEAR <= year <= MAXYEAR
* 1 <= month <= 12
* 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date.

This is equivalent to date . fromtimestamp (time.time ()).

classmethod date.fromtimestamp (fimestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime. time ().

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C localtime () function, and OSError on localtime () failure. It’'s common for this to be restricted
to years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion
of a timestamp, leap seconds are ignored by fromt imestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () function. Raise OSError instead of Val-
ueErroron localtime () failure.

classmethod date.fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.
ValueErrorisraisedunless 1 <= ordinal <= date.max.toordinal (). Foranydated, date.
fromordinal (d.toordinal ()) ==

classmethod date.fromisoformat (date_string)

Return a date corresponding to a date_string given in any valid ISO 8601 format, except ordinal dates (e.g.
YYYY-DDD):

>>> from datetime import date

>>> date.fromisoformat ('2019-12-04")
datetime.date (2019, 12, 4)

>>> date.fromisoformat ('20191204")
datetime.date (2019, 12, 4)

>>> date.fromisoformat ('2021-W01-1")
datetime.date (2021, 1, 4)

New in version 3.7.
Changed in version 3.11: Previously, this method only supported the format YYYY-MM-DD.

classmethod date.fromisocalendar (year, week, day)

Return a date corresponding to the ISO calendar date specified by year, week and day. This is the inverse of
the function date. isocalendar ().

New in version 3.8.

2 This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book Calendrical Calculations, where it’s the
base calendar for all computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

8.1. datetime — Basic date and time types 191

The Python Library Reference, Release 3.11.0

Class attributes:

date.min

The earliest representable date, date (MINYEAR, 1, 1).

date.max

The latest representable date, date (MAXYEAR, 12, 31).

date.resolution

The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year

Between MINYEAR and MAXYEAR inclusive.

date.month

Between 1 and 12 inclusive.

date.day

Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + timedelta | date2 will be timedelta.days days after datel. (1)

date2 = datel - timedelta | Computes date2 such that date2 + timedelta == datel. (2)

timedelta = datel - date2 | (3)

datel < date2 datel is considered less than date2 when datel precedes date2 in time.
“)

Notes:
(1) date2 is moved forward in time if timedelta.days > O, or backward if timedelta.days < 0.

2
3)

“4)

Afterward date2 - datel == timedelta.days. timedelta.seconds and timedelta.
microseconds are ignored. OverflowError is raised if date2.year would be smaller than
MINYEAR or larger than MAXYEAR.

timedelta.seconds and timedelta.microseconds are ignored.

This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

In other words, datel < date2 if and only if datel.toordinal () < date2.toordinal ().
Date comparison raises TypeError if the other comparand isn’t also a date object. However, Not Im—
plemented is returned instead if the other comparand has a timetuple () attribute. This hook gives
other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date object
is compared to an object of a different type, TypeError is raised unless the comparison is == or !=. The
latter cases return False or True, respectively.

In Boolean contexts, all date objects are considered to be true.

Instance methods:

date.replace (year=self.year, month=self.month, day=self.day)

Return a date with the same value, except for those parameters given new values by whichever keyword argu-
ments are specified.

Example:

>>> from datetime import date
>>> d = date (2002, 12, 31)
>>> d.replace (day=26)
datetime.date (2002, 12, 26)

192

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

date.timetuple ()

Return a t ime. st ruct_time such as returned by t ime. localtime ().
The hours, minutes and seconds are 0, and the DST flag is -1.

d.timetuple () is equivalent to:

time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday, -1))

where yday = d.toordinal () - date(d.year, 1, 1).toordinal () + 1 istheday number
within the current year starting with 1 for January Ist.

date.toordinal ()

Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
object d, date.fromordinal (d.toordinal ()) == d.

date.weekday ()

Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday () == 2,a Wednesday. See also i soweekday ().

date.isoweekday ()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4) .isoweekday () == 3,a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a named tuple object with three components: year, week and weekday.
The ISO calendar is a widely used variant of the Gregorian calendar.’

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004:

>>> from datetime import date

>>> date (2003, 12, 29).isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=1)
>>> date (2004, 1, 4).isocalendar ()
datetime.IsoCalendarDate (year=2004, week=1, weekday=7)

Changed in version 3.9: Result changed from a tuple to a named tuple.

date.isoformat ()

Return a string representing the date in ISO 8601 format, YYYY-MM-DD:

>>> from datetime import date
>>> date (2002, 12, 4).isoformat ()
'2002-12-04"

date.__str__ ()

For a date d, str (d) is equivalent to d.isoformat ().

date.ctime ()

Return a string representing the date:

>>> from datetime import date
>>> date (2002, 12, 4).ctime()
'Wed Dec 4 00:00:00 2002

d.ctime () is equivalent to:

3 See R. H. van Gent’s guide to the mathematics of the ISO 8601 calendar for a good explanation.

8.1. datetime — Basic date and time types 193

https://web.archive.org/web/20220531051136/https://webspace.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.11.0

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which date.
ctime () does not invoke) conforms to the C standard.

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

date.__format__ (format)

Same as date. strftime (). This makes it possible to specify a format string for a dat e object in format-
ted string literals and when using st r. format (). For a complete list of formatting directives, see strftime()
and strptime() Behavior.

Examples of Usage: date

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

.. my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday.days

202

More examples of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> # Methods related to formatting string output
>>> d.isoformat ()

'2002-03-11"

>>> d.strftime ("%d/sm/%y")
'11/03/02"

>>> d.strftime ("%A . %$B %Y")

'Monday 11. March 2002'

>>> d.ctime ()

'Mon Mar 11 00:00:00 2002"

>>> 'The is {0: }, the is {0:%B}.".format (d, "day", "month")
'The day is 11, the month is March.'

>>> # Methods for to extracting 'components' under different calendars
>>> t = d.timetuple ()

>>> for i in t:

C print (i)

2002 # year

3 # month

(continues on next page)

194 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year
-1

>>> ic = d.isocalendar ()

>>> for i in ic:

C. print (1)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)

>>> # A date object is immutable; all operations produce a new object
>>> d.replace (year=2005)
datetime.date (2005, 3, 11)

8.1.6 datetime Objects

A datet ime object is a single object containing all the information from a dat e object and a t ime object.

Like a date object, datet ime assumes the current Gregorian calendar extended in both directions; like a t ime
object, datet ime assumes there are exactly 3600*24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tzinfo=None,
* fold=0)

The year, month and day arguments are required. zinfo may be None, or an instance of a ¢ zinfo subclass.
The remaining arguments must be integers in the following ranges:

e MINYEAR <= year <= MAXYEAR,

e 1 <= month <= 12,

<= day <= number of days in the given month and year,
<= hour < 24,

minute < 60,

L]

o o o =
A
Il

<= second < 60,
e 0 <= microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, Va lueError is raised.
New in version 3.6: Added the fold argument.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with £t zinfo None.

Equivalent to:

datetime.fromtimestamp (time.time ())

See also now (), fromtimestamp ().

This method is functionally equivalent to now (), but without a t z parameter.

8.1. datetime — Basic date and time types 195

The Python Library Reference, Release 3.11.0

classmethod datetime.now (fz=None)

Return the current local date and time.

If optional argument #z is None or not specified, this is like today (), but, if possible, supplies more precision
than can be gotten from going through a time. t ime () timestamp (for example, this may be possible on
platforms supplying the C gettimeofday () function).

If #z is not None, it must be an instance of a t z1nfo subclass, and the current date and time are converted to
17’s time zone.

This function is preferred over today () and utcnow ().

classmethod datetime.utcnow ()

Return the current UTC date and time, with t zinfo None.

This is like now (), but returns the current UTC date and time, as a naive datet ime object. An aware
current UTC datetime can be obtained by calling datetime.now (timezone.utc). See also now ().

Warning: Because naive datet ime objects are treated by many dat et ime methods as local times, it
is preferred to use aware datetimes to represent times in UTC. As such, the recommended way to create
an object representing the current time in UTC is by calling datet ime.now (timezone.utc).

classmethod datetime.fromtimestamp (fimestamp, tz=None)

Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime . t ime ().
If optional argument #z is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned dat et ime object is naive.

If 1z is not None, it must be an instance of a t zinfo subclass, and the timestamp is converted to 7z’s time
zone.

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values supported
by the platform C localtime () or gmtime () functions, and OSError on localtime () or gm-—
time () failure. It's common for this to be restricted to years in 1970 through 2038. Note that on non-POSIX
systems that include leap seconds in their notion of a timestamp, leap seconds are ignored by fromtimes—
tamp (), and then it’s possible to have two timestamps differing by a second that yield identical datet ime
objects. This method is preferred over ut cfromtimestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () or gmtime () functions. Raise OSError
instead of ValueErroron localtime () or gmtime () failure.

Changed in version 3.6: fromtimestamp () may return instances with fold setto 1.

classmethod datetime.utcfromtimestamp (timestamp)

Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. (The resulting
object is naive.)

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C gmtime () function, and OSError on gmtime () failure. It's common for this to be restricted to years
in 1970 through 2038.

To get an aware datet ime object, call fromtimestamp ():

’datetime.fromtimestamp(timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

’datetime(l970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

196

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

Warning: Because naive datetime objects are treated by many datetime methods as lo-
cal times, it is preferred to use aware datetimes to represent times in UTC. As such, the recom-
mended way to create an object representing a specific timestamp in UTC is by calling datetime.
fromtimestamp (timestamp, tz=timezone.utc).

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C gmt ime () function. Raise OSError instead of ValueError
on gmt ime () failure.

classmethod datetime.fromordinal (ordinal)

Return the datet ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError israised unless 1 <= ordinal <= datetime.max.toordinal (). The hour,
minute, second and microsecond of the result are all 0, and t zinfois None.

classmethod datetime.combine (date, time, tzinfo=self.tzinfo)

Return a new datetime object whose date components are equal to the given date object’s, and whose
time components are equal to the given t ime object’s. If the tzinfo argument is provided, its value is used to
set the t zinfo attribute of the result, otherwise the ¢ zinfo attribute of the fime argument is used.

For any datetime objectd, d == datetime.combine (d.date(), d.time(), d.tzinfo).
If date is a datet ime object, its time components and t zinfo attributes are ignored.

Changed in version 3.6: Added the tzinfo argument.

classmethod datetime.fromisoformat (date_string)

Return a datet ime corresponding to a date_string in any valid ISO 8601 format, with the following excep-
tions:

1. Time zone offsets may have fractional seconds.

2. The T separator may be replaced by any single unicode character.
3. Ordinal dates are not currently supported.

4. Fractional hours and minutes are not supported.

Examples:

>>> from datetime import datetime
>>> datetime.fromisoformat ('2011-11-04")
datetime.datetime (2011, 11, 4, 0, 0)
>>> datetime.fromisoformat ('20111104")
datetime.datetime (2011, 11, 4, 0, 0)
>>> datetime.fromisoformat ('2011-11-04T00:05:23")
datetime.datetime (20121, 11, 4, 0, 5, 23)
>>> datetime.fromisoformat ('2011-11-04T00:05:2372")
datetime.datetime (2011, 11, 4, 0, 5, 23, tzinfo=datetime.timezone.utc)
>>> datetime.fromisoformat ('20111104T000523")
datetime.datetime (2011, 11, 4, 0, 5, 23)
>>> datetime.fromisoformat ('2011-WO01-2T00:05:23.283")
datetime.datetime (2011, 1, 4, 0, 5, 23, 283000)
>>> datetime.fromisoformat ('2011-11-04 00:05:23.283")
datetime.datetime (20121, 11, 4, 0, 5, 23, 283000)
>>> datetime.fromisoformat ('2011-11-04 00:05:23.283+00:00")
datetime.datetime (2011, 11, 4, 0, 5, 23, 283000, tzinfo=datetime.timezone.utc)
>>> datetime.fromisoformat ('2011-11-04T00:05:23+04:00")
datetime.datetime (2011, 11, 4, 0, 5, 23,

tzinfo=datetime.timezone (datetime.timedelta (seconds=14400)))

New in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by date.
isoformat () or datetime.isoformat ().

8.1. datetime — Basic date and time types 197

The Python Library Reference, Release 3.11.0

classmethod datetime.fromisocalendar (year, week, day)

Return a datet ime corresponding to the ISO calendar date specified by year, week and day. The non-date
components of the datetime are populated with their normal default values. This is the inverse of the function
datetime.isocalendar ().

New in version 3.8.

classmethod datetime.strptime (date_string, format)
Return a datet ime corresponding to date_string, parsed according to format.

This is equivalent to:

datetime (* (time.strptime (date_string, format) [0:6]))

ValueError israised if the date_string and format can’t be parsed by t ime . st rpt ime () or if it returns
a value which isn’t a time tuple. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

Class attributes:

datetime.min
The earliest representable datet ime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month

Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour

In range (24).

datetime.minute

In range (60).

datetime.second

In range (60).

datetime.microsecond
In range (1000000).

datetime.tzinfo

The object passed as the zinfo argument to the datet ime constructor, or None if none was passed.

datetime. fold

In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value O (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

198 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datetime to datetime. (4)

(1) datetime?2 is a duration of timedelta removed from datetime 1, moving forward in time if timedelta.days
>0, or backward if timedelta.days <0. The result has the same t z i nfo attribute as the input datetime,
and datetime?2 - datetimel == timedelta after. OverflowError israised if datetime2.year would be smaller
than MTNYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an
aware object.

(2) Computes the datetime?2 such that datetime2 + timedelta == datetime 1. As for addition, the result has the same
tzinfo attribute as the input datetime, and no time zone adjustments are done even if the input is aware.

(3) Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeFError is raised.

If both are naive, or both are aware and have the same t zinfo attribute, the t zinfo attributes are ignored,
and the result is a t imedelta object t such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

If both are aware and have different t zinfo attributes, a—b acts as if a and b were first converted to naive
UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) - (b.
replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

(4) datetimel is considered less than datetime2 when datetimel precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted.
For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same t z i n o attribute, the common t z i n o attribute is ignored
and the base datetimes are compared. If both comparands are aware and have different ¢ z1info attributes,
the comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Changed in version 3.3: Equality comparisons between aware and naive datet ime instances don’t raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datet ime object.
However, Not Implemented is returned instead if the other comparand has a timetuple () attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a
datet ime object is compared to an object of a different type, TypeError is raised unless the comparison
is == or !=. The latter cases return False or True, respectively.

Instance methods:

datetime.date ()

Return date object with same year, month and day.

datetime.time ()

Return t ime object with same hour, minute, second, microsecond and fold. tzinfo is None. See also
method timetz ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.timetz ()

Return t i me object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

8.1. datetime — Basic date and time types 199

The Python Library Reference, Release 3.11.0

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour, minute=self.minute,

second=self.second, microsecond=self.microsecond, tzinfo=self.tzinfo, *, fold=0)

Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

New in version 3.6: Added the fold argument.

datetime.astimezone (1z=None)

Return a datetime object with new tzinfo attribute z, adjusting the date and time data so the result is
the same UTC time as self, but in #7’s local time.

If provided, fz must be an instance of a t zinfo subclass, and its ut cof fset () and dst () methods must
not return None. If self is naive, it is presumed to represent time in the system timezone.

If called without arguments (or with t z=None) the system local timezone is assumed for the target timezone.
The .t zinfo attribute of the converted datetime instance will be set to an instance of t imezone with the
zone name and offset obtained from the OS.

If self.tzinfois#z, self.astimezone (tz) is equal to self: no adjustment of date or time data is
performed. Else the result is local time in the timezone #z, representing the same UTC time as self: after astz
= dt.astimezone (tz),astz — astz.utcoffset () will have the same date and time data as dt
- dt.utcoffset ().

If you merely want to attach a time zone object #z to a datetime dt without adjustment of date and time data, use
dt.replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime
dt without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default tzinfo. fromutc () method can be overridden in a t z1nfo subclass to affect the
result returned by ast imezone (). Ignoring error cases, ast imezone () acts like:

def astimezone (self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: #z now can be omitted.

Changed in version 3.6: The ast imezone () method can now be called on naive instances that are presumed
to represent system local time.

datetime.utcoffset ()

If tzinfois None, returns None, else returns self.tzinfo.utcoffset (self), and raises an ex-
ception if the latter doesn’t return None or a t imedeta object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

datetime.dst ()

If tzinfois None, returns None, else returns self.tzinfo.dst (self), and raises an exception if
the latter doesn’t return None or a t imedelta object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname ()

If tzinfois None, returns None, else returns self.tzinfo.tzname (self), raises an exception if
the latter doesn’t return None or a string object,

datetime.timetuple ()

Return a t ime. st ruct_time such as returned by t ime. localtime ().

d.timetuple () is equivalent to:

200

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

time.struct_time ((d.year, d.month, d.day,
d.hour, d.minute, d.second,
d.weekday (), yday, dst))

where yday = d.toordinal () - date(d.year, 1, 1).toordinal () + 1 isthedaynumber
within the current year starting with 1 for January Ist. The tm_isdst flag of the result is set according to the
dst () method: tzinfois None or dst () returns None, tm_isdst issetto —1;else if dst () returns
a non-zero value, tm_isdst issetto 1;else tm_isdst issetto 0.

datetime.utctimetuple ()
If datetime instance d is naive, this is the same as d. timetuple () except that tm_1isdst is forced to

0 regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),anda t ime. st ruct_time
for the normalized time is returned. tm_isdst is forced to 0. Note that an OverflowError may be
raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

Warning: Because naive datet ime objects are treated by many datet ime methods as local times,
it is preferred to use aware datetimes to represent times in UTC; as a result, using utcfromtimetu-
ple may give misleading results. If you have a naive datet ime representing UTC, use datetime.
replace (tzinfo=timezone.utc) to make it aware, at which point you can use datetime.
timetuple ().

datetime.toordinal ()

Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()

Return POSIX timestamp corresponding to the datet ime instance. The return value is a £1oat similar to
that returned by time. time ().

Naive datet ime instances are assumed to represent local time and this method relies on the platform C
mktime () function to perform the conversion. Since datet ime supports wider range of values than mk—
time () on many platforms, this method may raise OverflowError for times far in the past or far in the
future.

For aware datet ime instances, the return value is computed as:

(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)).total_seconds ()

New in version 3.3.

Changed in version 3.6: The timestamp () method uses the fold attribute to disambiguate the times
during a repeated interval.

Note: There is no method to obtain the POSIX timestamp directly from a naive datet ime instance repre-
senting UTC time. If your application uses this convention and your system timezone is not set to UTC, you
can obtain the POSIX timestamp by supplying t zinfo=timezone.utc:

’timestamp = dt.replace(tzinfo=timezone.utc) .timestamp ()

or by calculating the timestamp directly:

’timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1)

datetime.weekday ()

Return the day of the week as an integer, where Monday is O and Sunday is 6. The same as self.date () .
weekday (). See also i soweekday ().

8.1. datetime — Basic date and time types 201

The Python Library Reference, Release 3.11.0

datetime.isoweekday ()

Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date () .
isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()

Return a named tuple with three components: year, week and weekday. The same as self.date () .
isocalendar ().

datetime.isoformat (sep='T", timespec="auto")

Return a string representing the date and time in ISO 8601 format:
* YYYY-MM-DDTHH:MM:SS.fff£ff,if microsecondisnot0
¢ YYYY-MM-DDTHH:MM:SS, if microsecondis0
If utcoffset () does not return None, a string is appended, giving the UTC offset:
* YYYY-MM-DDTHH:MM:SS.ffffff+HH:MM[:SS[.f£££££f]],if microsecondisnot0
* YYYY-MM-DDTHH:MM:SS+HH:MM[:SS[.ffffff]],if microsecondis0

Examples:

>>> from datetime import datetime, timezone

>>> datetime (2019, 5, 18, 15, 17, 8, 132263).isoformat ()
'2019-05-18T15:17:08.132263"

>>> datetime (2019, 5, 18, 15, 17, tzinfo=timezone.utc) .isoformat ()
'2019-05-18T15:17:00+00:00"

The optional argument sep (default ' T ') is a one-character separator, placed between the date and time portions
of the result. For example:

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo) :
"""A time zone with an arbitrary, constant -06:39 offset."""
def utcoffset (self, dt):
return timedelta (hours=-6, minutes=-39)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ")

'2002-12-25 00:00:00-06:39"
>>> datetime (2009, 11, 27, microsecond=100, tzinfo=TZ()) .isoformat ()

'2009-11-27T00:00:00.000100-06:39"

The optional argument timespec specifies the number of additional components of the time to include (the
defaultis 'auto'). It can be one of the following:

e 'gquto': Same as 'seconds' if microsecondis 0, same as 'microseconds' otherwise.
* 'hours"': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e '"seconds': Include hour, minute, and second in HH:MM: SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS. sss format.

e 'microseconds': Include full time in HH:MM: SS. ffff£ff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument:

202 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

>>> from datetime import datetime

>>> datetime.now () .isoformat (timespec="minutes"')
'2002-12-25T00:00"

>>> dt = datetime (2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat (timespec="microseconds")
'2015-01-01T12:30:59.000000"

New in version 3.6: Added the fimespec argument.

datetime.__str__ ()

For a datetime instance d, str (d) is equivalentto d.isoformat (' ').

datetime.ctime ()

Return a string representing the date and time:

>>> from datetime import datetime
>>> datetime (2002, 12, 4, 20, 30, 40).ctime()
'Wed Dec 4 20:30:40 2002"

The output string will not include time zone information, regardless of whether the input is aware or naive.

d.ctime () is equivalent to:

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which
datetime.ctime () does not invoke) conforms to the C standard.

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

datetime.__format__ (format)

Same as datetime. stritime (). This makes it possible to specify a format string for a dat et ime object
in formatted string literals and when using st r. format (). For a complete list of formatting directives, see
strftime() and strptime() Behavior.

Examples of Usage: datetime

Examples of working with datet ime objects:

>>> from datetime import datetime, date, time, timezone

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine (d, t)
datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1

>>> datetime.now (timezone.utc)

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060, tzinfo=datetime.timezone.utc)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime("21/11/06 16:30", "&d/%m/%y SH:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple () to get tuple of all attributes

(continues on next page)

8.1. datetime — Basic date and time types 203

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> tt = dt.timetuple ()
>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since lst January
-1 # dst - method tzinfo.dst () returned None

>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

>>> # Formatting a datetime

>>> dt.strftime ("$A, $d. %B %Y $I:%MS%p")

'Tuesday, 21. November 2006 04:30PM'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}."'.format (dt, "day
", "month", "time")

'The day is 21, the month is November, the time is 04:30PM.'

The example below defines a t z i n fo subclass capturing time zone information for Kabul, Afghanistan, which used
+4 UTC until 1945 and then +4:30 UTC thereafter:

from datetime import timedelta, datetime, tzinfo, timezone

class KabulTz (tzinfo) :
Kabul used +4 until 1945, when they moved to +4:30
UTC_MOVE_DATE = datetime (1944, 12, 31, 20, tzinfo=timezone.utc)

def utcoffset(self, dt):
if dt.year < 1945:
return timedelta (hours=4)
elif (1945, 1, 1, 0, 0) <= dt.timetuple()[:5] < (1945, 1, 1, 0, 30):
An ambiguous ("imaginary'") half-hour range representing
a 'fold' in time due to the shift from +4 to +4:30.
If dt falls in the imaginary range, use fold to decide how
to resolve. See PEP495.
return timedelta (hours=4, minutes= (30 if dt.fold else 0))
else:
return timedelta (hours=4, minutes=30)

def fromutc(self, dt):
Follow same validations as 1in datetime.tzinfo
if not isinstance(dt, datetime) :
raise TypeError ("fromutc() requires a datetime argument")
if dt.tzinfo is not self:
raise ValueError("dt.tzinfo is not self")

A custom implementation is required for fromutc as
the input to this function is a datetime with utc values
but with a tzinfo set to self.

(continues on next page)

204 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

See datetime.astimezone or fromtimestamp.

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:
return dt + timedelta (hours=4, minutes=30)

else:
return dt + timedelta (hours=4)

def dst(self, dt):
Kabul does not observe daylight saving time.
return timedelta (0)

def tzname (self, dt):
if dt >= self.UTC_MOVE_DATE:
return "+04:30"
return "+04"

Usage of KabulTz from above:

>>> tzl = KabulTz ()

>>> # Datetime before the change

>>> dtl = datetime (1900, 11, 21, 16, 30, tzinfo=tzl)
>>> print (dtl.utcoffset ())

4:00:00

>>> # Datetime after the change

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=tzl)
>>> print (dt2.utcoffset ())

4:30:00

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (timezone.utc)

>>> dt3

datetime.datetime (2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2 == dt3

True

8.1.7 time Objects
A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)

All arguments are optional. #zinfo may be None, or an instance of a t zinfo subclass. The remaining argu-
ments must be integers in the following ranges:

. <= hour < 24,
<= minute < 60,

second < 60,

L]

o o o o
A
Il

<= microsecond < 1000000,
e fold in [0, 17.

If an argument outside those ranges is given, ValueError is raised. All default to O except tzinfo, which
defaults to None.

Class attributes:

8.1. datetime — Basic date and time types 205

The Python Library Reference, Release 3.11.0

time.min

The earliest representable ¢ ime, time (0, 0, 0, 0).

time.max
The latest representable t ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal ¢ ime objects, t imedelta (microseconds=1),al-
though note that arithmetic on ¢ ime objects is not supported.

Instance attributes (read-only):

time.hour

In range (24).

time.minute

In range (60).

time.second

In range (60).

time.microsecond
In range (1000000).

time.tzinfo

The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

time. fold

In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value O (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

t ime objects support comparison of time to time, where a is considered less than b when a precedes b in time.
If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted. For
equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same t zinfo attribute, the common t z info attribute is ignored and
the base times are compared. If both comparands are aware and have different t z i nfo attributes, the comparands
are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-
type comparisons from falling back to the default comparison by object address, when a t ime object is compared
to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter cases return
False or True, respectively.

Changed in version 3.3: Equality comparisons between aware and naive t ime instances don’t raise TypeError.
In Boolean contexts, a t ime object is always considered to be true.

Changed in version 3.5: Before Python 3.5, a ¢ ime object was considered to be false if it represented midnight in
UTC. This behavior was considered obscure and error-prone and has been removed in Python 3.5. See bpo-13936
for full details.

Other constructor:

classmethod time.fromisoformat (fime_string)

Return a ¢ ime corresponding to a fime_string in any valid ISO 8601 format, with the following exceptions:
1. Time zone offsets may have fractional seconds.

2. The leading T, normally required in cases where there may be ambiguity between a date and a time, is
not required.

3. Fractional seconds may have any number of digits (anything beyond 6 will be truncated).

206 Chapter 8. Data Types

https://bugs.python.org/issue?@action=redirect&bpo=13936

The Python Library Reference, Release 3.11.0

4. Fractional hours and minutes are not supported.

Examples:

>>> from datetime import time

>>> time.fromisoformat ('04:23:01")

datetime.time (4, 23, 1)

>>> time.fromisoformat ('T04:23:01")

datetime.time (4, 23, 1)

>>> time.fromisoformat ('T042301")

datetime.time (4, 23, 1)

>>> time.fromisoformat ('04:23:01.000384")
datetime.time (4, 23, 1, 384)

>>> time.fromisoformat ('04:23:01,000")
datetime.time (4, 23, 1, 384)

>>> time.fromisoformat ('04:23:01+04:00")
datetime.time (4, 23, 1, tzinfo=datetime.timezone (datetime.
—~timedelta (seconds=14400)))

>>> time.fromisoformat ('04:23:0172")

datetime.time (4, 23, 1, tzinfo=datetime.timezone.utc)
>>> time.fromisoformat ('04:23:01+00:00")
datetime.time (4, 23, 1, tzinfo=datetime.timezone.utc)

New in version 3.7.

Changed in version 3.11: Previously, this method only supported formats that could be emitted by time.
isoformat ().

Instance methods:

time.replace (hour=self.hour, minute=self.minute, second=self.second, microsecond=self.microsecond,
tzinfo=self.tzinfo, *, fold=0)

Return a ¢ i me with the same value, except for those attributes given new values by whichever keyword argu-
ments are specified. Note that t zinfo=None can be specified to create a naive t ime from an aware t ime,
without conversion of the time data.

New in version 3.6: Added the fold argument.

time.isoformat (fimespec='auto")

Return a string representing the time in ISO 8601 format, one of:
e HH:MM:SS.ffffff, if microsecondisnot(
e HH:MM:SS, if microsecondis 0
e HH:MM:SS.ffffff+HH:MM[:SS[.fEff£f£ff]],if utcorfset () does not return None

e HH:MM:SS+HH:MM[:SS[.ffffff]],if microsecondisOand utcoffset () doesnotreturn
None

The optional argument timespec specifies the number of additional components of the time to include (the
defaultis 'auto"). It can be one of the following:

e 'auto': Sameas 'seconds' if microsecondis(, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e '"seconds': Include hour, minute, and second in HH:MM: SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS. sss format.

¢ 'microseconds': Include full time in HH:MM: SS. f£f £ £ £ format.

8.1. datetime — Basic date and time types 207

The Python Library Reference, Release 3.11.0

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument.

Example:

>>> from datetime import time

>>> time (hour=12, minute=34, second=56, microsecond=123456) .isoformat (timespec=
—'minutes')

'12:34"

>>> dt = time (hour=12, minute=34, second=56, microsecond=0)

>>> dt.isoformat (timespec="microseconds")

'12:34:56.000000"

>>> dt.isoformat (timespec="auto')

'12:34:56"

New in version 3.6: Added the fimespec argument.

0

Foratimet, str (t) isequivalentto t .isoformat ().

time.__str

time.strftime (format)
Return a string representing the time, controlled by an explicit format string. For a complete list of formatting
directives, see strftime() and strptime() Behavior.

time.__format__ (format)

Same as t ime. st rftime (). This makes it possible to specify a format string for a ¢ i me object in format-
ted string literals and when using st r. format (). For a complete list of formatting directives, see strftime()
and strptime() Behavior.

time.utcoffset ()

If tzinfois None, returns None, else returns self.tzinfo.utcoffset (None), and raises an ex-
ception if the latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

time.dst ()

If tzinfois None, returns None, else returns self.tzinfo.dst (None), and raises an exception if
the latter doesn’t return None, or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

time.tzname ()

If tzinfois None, returns None, else returns self.tzinfo.tzname (None), or raises an exception
if the latter doesn’t return None or a string object.

Examples of Usage: time

Examples of working with a t ime object:

>>> from datetime import time, tzinfo, timedelta
>>> class TZ1l(tzinfo):
def utcoffset (self, dt):
return timedelta (hours=1)
def dst(self, dt):
return timedelta (0)
def tzname (self,dt):
return "+01:00"
def _ repr__ (self):

return f"{self. class __name___} ()"

(continues on next page)

208 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> t = time (12, 10, 30, tzinfo=TZ1())
>>> t

datetime.time (12, 10, 30, tzinfo=Tz1())
>>> t.isoformat ()

'12:10:30+01:00"

>>> t.dst ()

datetime.timedelta (0)

>>> t.tzname ()

'+01:00'

>>> t.strftime ("$H:%M:%S $Z2")

'12:10:30 +01:00"

>>> 'The is {:%H:%M}.'".format ("time", t)
'The time is 12:10."

8.1.8 tzinfo Objects

class datetime.tzinfo

This is an abstract base class, meaning that this class should not be instantiated directly. Define a subclass of
t zinfo to capture information about a particular time zone.

An instance of (a concrete subclass of) ¢ z1info can be passed to the constructors for datet ime and t ime
objects. The latter objects view their attributes as being in local time, and the t z i n £ o object supports methods
revealing offset of local time from UTC, the name of the time zone, and DST offset, all relative to a date or
time object passed to them.

You need to derive a concrete subclass, and (at least) supply implementations of the standard t z i n o methods
needed by the dat et ime methods you use. The dat et ime module provides t imezone, asimple concrete
subclass of tzinfo which can represent timezones with fixed offset from UTC such as UTC itself or North
American EST and EDT.

Special requirement for pickling: A t zinfo subclass musthavean ___init__ () method that can be called
with no arguments, otherwise it can be pickled but possibly not unpickled again. This is a technical requirement
that may be relaxed in the future.

A concrete subclass of ¢ zinfo may need to implement the following methods. Exactly which methods are
needed depends on the uses made of aware datet ime objects. If in doubt, simply implement all of them.

tzinfo.utcoffset (dt)

Return offset of local time from UTC, as a t imedelta object that is positive east of UTC. If local time is
west of UTC, this should be negative.

This represents the total offset from UTC; for example, if a £ zinfo object represents both time zone and
DST adjustments, utcoffset () should return their sum. If the UTC offset isn’t known, return None.
Else the value returned must be a t imedelta object strictly between -t imedelta (hours=24) and
timedelta (hours=24) (the magnitude of the offset must be less than one day). Most implementations
of utcoffset () will probably look like one of these two:

return CONSTANT # fixed-offset class
return CONSTANT + self.dst (dt) # daylight-aware class

If utcoffset () does not return None, dst () should not return None either.
The default implementation of utcoffset () raises Not ImplementedError.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

tzinfo.dst (dt)

Return the daylight saving time (DST) adjustment, as a t imede 1 t a object or None if DST information isn’t
known.

8.1. datetime — Basic date and time types 209

The Python Library Reference, Release 3.11.0

Return timedelta (0) if DST is not in effect. If DST is in effect, return the offset as a t imede 1t a object
(see utcorffset () for details). Note that DST offset, if applicable, has already been added to the UTC offset
returned by utcoffset (), so there’s no need to consult dst () unless you're interested in obtaining DST
info separately. For example, datetime.timetuple () callsits t zinfo attribute’s dst () method to
determine how the tm_isdst flag should be set, and tzinfo. fromutc () calls dst () to account for
DST changes when crossing time zones.

An instance z of a t z1info subclass that models both standard and daylight times must be consistent in this

sense:
tz.utcoffset (dt) - tz.dst (dt)
must return the same result for every datet imedt withdt .tzinfo == tz Forsane t zinfo subclasses,

this expression yields the time zone’s “standard offset”, which should not depend on the date or the time, but
only on geographic location. The implementation of datetime.astimezone () relies on this, but cannot
detect violations; it’s the programmer’s responsibility to ensure it. If a £ zinfo subclass cannot guarantee
this, it may be able to override the default implementation of tzinfo. fromutc () to work correctly with
astimezone () regardless.

Most implementations of dst () will probably look like one of these two:

def dst(self, dt):
a fixed-offset class: doesn't account for DST
return timedelta (0)

or:

def dst(self, dt):
Code to set dston and dstoff to the time zone's DST
transition times based on the input dt.year, and expressed
in standard local time.

if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta (hours=1)

else:
return timedelta (0)

The default implementation of dst () raises Not ImplementedError.
Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

tzinfo.tzname (dt)

Return the time zone name corresponding to the dat et ime object dt, as a string. Nothing about string names
is defined by the datetime module, and there’s no requirement that it mean anything in particular. For
example, “GMT”, “UTC”, “-5007, “-5:00”, “EDT”, “US/Eastern”, “America/New York” are all valid replies.
Return None if a string name isn’t known. Note that this is a method rather than a fixed string primarily
because some tzinfo subclasses will wish to return different names depending on the specific value of dt
passed, especially if the ¢ zinfo class is accounting for daylight time.

The default implementation of t zname () raises Not ImplementedError.

These methods are called by a datet ime or t ime object, in response to their methods of the same names. A
datetime object passes itself as the argument, and a t ime object passes None as the argument. A tzinfo
subclass’s methods should therefore be prepared to accept a dt argument of None, or of class datet ime.

When None is passed, it’s up to the class designer to decide the best response. For example, returning None is
appropriate if the class wishes to say that time objects don’t participate in the ¢z info protocols. It may be more
useful for utcoffset (None) to return the standard UTC offset, as there is no other convention for discovering
the standard offset.

When a datet ime object is passed in response to a datet ime method, dt . tzinfo is the same object as self.
t zinfo methods can rely on this, unless user code calls ¢ zinfo methods directly. The intent is that the t zinfo
methods interpret dt as being in local time, and not need worry about objects in other timezones.

There is one more t zinfo method that a subclass may wish to override:

210 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

tzinfo.fromutec (dt)

This is called from the default datet ime.astimezone () implementation. When called from that, dt .
tzinfo is self, and df’s date and time data are to be viewed as expressing a UTC time. The purpose of
fromutc () is to adjust the date and time data, returning an equivalent datetime in self’s local time.

Most t z 1info subclasses should be able to inherit the default fromutc () implementation without problems.
It’s strong enough to handle fixed-offset time zones, and time zones accounting for both standard and daylight
time, and the latter even if the DST transition times differ in different years. An example of a time zone the
default fromutc () implementation may not handle correctly in all cases is one where the standard offset
(from UTC) depends on the specific date and time passed, which can happen for political reasons. The default
implementations of astimezone () and fromutc () may not produce the result you want if the result is
one of the hours straddling the moment the standard offset changes.

Skipping code for error cases, the default fromutc () implementation acts like:

def fromutc(self, dt):
raise ValueError error 1if dt.tzinfo is not self
dtoff = dt.utcoffset ()
dtdst = dt.dst ()
raise ValueError 1if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst ()
raise ValueError 1f dtdst is None
if dtdst:
return dt + dtdst
else:
return dt

In the following t zinfo_examples. py file there are some examples of ¢ zinfo classes:

from datetime import tzinfo, timedelta, datetime

ZERO timedelta (0)
HOUR = timedelta (hours=1)
SECOND = timedelta (seconds=1)

A class capturing the platform's idea of local time.
(May result in wrong values on historical times in

timezones where UTC offset and/or the DST rules had
changed in the past.)

import time as _time

STDOFFSET = timedelta(seconds = —_time.timezone)
if _time.daylight:

DSTOFFSET = timedelta(seconds = —_time.altzone)
else:

DSTOFFSET = STDOFFSET
DSTDIFF = DSTOFFSET - STDOFFSET
class LocalTimezone (tzinfo) :

def fromutc(self, dt):
assert dt.tzinfo is self
stamp = (dt - datetime (1970, 1, 1, tzinfo=self)) // SECOND
args = _time.localtime (stamp) [:6]
dst_diff = DSTDIFF // SECOND
Detect fold
fold = (args == _time.localtime(stamp - dst_diff))
return datetime (*args, microsecond=dt.microsecond,

(continues on next page)

8.1. datetime — Basic date and time types 211

The Python Library Reference, Release 3.11.0

(continued from previous page)

tzinfo=self, fold=fold)

def utcoffset(self, dt):
if self._isdst(dt):
return DSTOFFSET
else:
return STDOFFSET

def dst (self, dt):
if self._isdst(dt):
return DSTDIFF
else:
return ZERO

def tzname (self, dt):
return _time.tzname[self._isdst (dt)]

def _isdst (self, dt):

tt = (dt.year, dt.month, dt.day,
dt .hour, dt.minute, dt.second,
dt.weekday (), 0, 0)

stamp = _time.mktime (tt)

tt = _time.localtime (stamp)

return tt.tm_isdst > 0

Local = LocalTimezone ()

A complete implementation of current DST rules for major US time zones.

def first_sunday_on_or_after (dt):
days_to_go = 6 — dt.weekday ()
if days_to_go:
dt += timedelta (days_to_go)
return dt

US DST Rules

This is a simplified (i.e., wrong for a few cases) set of rules for US
DST start and end times. For a complete and up-to-date set of DST rules
and timezone definitions, visit the Olson Database (or try pytz):
http://www.twinsun.com/tz/tz-1ink.htm
https://sourceforge.net/projects/pytz/ (might not be up-to-date)

In the US, since 2007, DST starts at 2am (standard time) on the second
Sunday in March, which is the first Sunday on or after Mar 8.
DSTSTART_2007 = datetime (1, 3, 8, 2)

and ends at 2am (DST time) on the first Sunday of Nov.

DSTEND_2007 = datetime (1, 11, 1, 2)

From 1987 to 2006, DST used to start at Z2am (standard time) on the first
Sunday in April and to end at Z2am (DST time) on the last

Sunday of October, which is the first Sunday on or after Oct 25.
DSTSTART_1987_2006 = datetime (1, 4, 1, 2)

DSTEND_1987_2006 = datetime (1, 10, 25, 2)

From 1967 to 1986, DST used to start at Z2am (standard time) on the last
Sunday in April (the one on or after April 24) and to end at 2am (DST time)
on the last Sunday of October, which is the first Sunday

on or after Oct 25.

DSTSTART_1967_1986 = datetime (1, 4, 24, 2)

DSTEND_1967_1986 = DSTEND_1987_2006

o H R W R R R R R

(continues on next page)

212 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

def us_dst_range (year) :

Find start and end times for US DST. For years before 1967,

return

DSTEND_2007

DSTEND_1987_2006

DSTEND_1967_1986

start = end for no DST.
if 2006 < year:

dststart, dstend = DSTSTART_2007,
elif 1986 < year < 2007:

dststart, dstend = DSTSTART_1987_2006,
elif 1966 < year < 1987:

dststart, dstend = DSTSTART_1967_1986,
else:

return (datetime (year, 1, 1),) * 2
start =

end =

return start, end

class USTimeZone (tzinfo) :

def _ init__ (self, hours,
self.stdoffset =
self.reprname =
self.stdname =
self.dstname =

reprname,

reprname
stdname
dstname
def _ _repr__ (self):
return self.reprname
def tzname (self, dt):
if self.dst(dt):

return self.dstname
else:

return self.stdname
def

utcoffset (self, dt):

first_sunday_on_or_after (dststart.replace(year=year))
first_sunday_on_or_after (dstend.replace (year=year))

stdname, dstname) :

timedelta (hours=hours)

return self.stdoffset + self.dst (dt)

def dst (self,

if dt

dt) :

is None or dt.tzinfo is None:
An exception may be sensible here,
It depends on how you want to treat them.

in one or both cases.
The default

fromutc () implementation (called by the default astimezone ()
implementation) passes a datetime with dt.tzinfo is self.

return ZERO
assert dt.tzinfo is self
start, end =

dt first.
dt = dt.replace(tzinfo=None)
if start + HOUR <=
DST is in effect.
return HOUR
if end - HOUR <= dt < end:
Fold (an ambiguous hour) :
return ZERO if dt.fold else
if start <= dt < start + HOUR:

Gap (a non-existent hour):

return HOUR if dt.fold else
DST is off.
return ZERO

us_dst_range (dt.year)
Can't compare naive to aware objects,

so strip the timezone from

dt < end - HOUR:

use dt.fold to disambiguate.
HOUR

reverse the fold rule.
ZERO

(continues on next page)

8.1. datetime — Basic date and time types

213

The Python Library Reference, Release 3.11.0

(continued from previous page)

def fromutc(self, dt):
assert dt.tzinfo is self
start, end = us_dst_range (dt.year)
start = start.replace(tzinfo=self)
end = end.replace(tzinfo=self)
std_time = dt + self.stdoffset
dst_time = std_time + HOUR
if end <= dst_time < end + HOUR:
Repeated hour
return std_time.replace(fold=1)
if std_time < start or dst_time >= end:
Standard time
return std_time
if start <= std_time < end - HOUR:
Daylight saving time
return dst_time

Eastern = USTimeZone (-5, "Eastern", "EST", "EDT")
Central = USTimeZone (-6, "Central", "csTt", "CDT")
Mountain = USTimeZone (-7, "Mountain", "MST", "MDT")
Pacific = USTimeZone (-8, "Pacific", "pST", "PDT")

Note that there are unavoidable subtleties twice per year in a ¢t zinfo subclass accounting for both standard and
daylight time, at the DST transition points. For concreteness, consider US Eastern (UTC -0500), where EDT begins
the minute after 1:59 (EST) on the second Sunday in March, and ends the minute after 1:59 (EDT) on the first Sunday
in November:

UuTcC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM :MM 3:MM
EDT 23:MM O:MM 1:MM 2:MM 3:MM 4:MM

N

start 22:MM 23:MM O:MM 1:MM 3:MM 4:MM

end 23:MM O:MM 1:MM 1:MM 2:MM 3:MM

When DST starts (the “start” line), the local wall clock leaps from 1:59 to 3:00. A wall time of the form 2:MM
doesn’t really make sense on that day, so astimezone (Eastern) won't deliver a result with hour == 2 on
the day DST begins. For example, at the Spring forward transition of 2016, we get:

>>> from datetime import datetime, timezone
>>> from tzinfo_examples import HOUR, Eastern
>>> u0 = datetime (2016, 3, 13, 5, tzinfo=timezone.utc)
>>> for i in range(4):
u = u0 + 1*HOUR
t = u.astimezone (Eastern)
print (u.time (), 'UTC ="', t.time(), t.tzname())

05:00:00 UTC = 00:00:00 EST
06:00:00 UTC = 01:00:00 EST
07:00:00 UTC = 03:00:00 EDT
08:00:00 UTIC = 04:00:00 EDT

When DST ends (the “end” line), there’s a potentially worse problem: there’s an hour that can’t be spelled unam-
biguously in local wall time: the last hour of daylight time. In Eastern, that’s times of the form 5:MM UTC on the
day daylight time ends. The local wall clock leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. ast imezone () mimics the local clock’s behavior by mapping two
adjacent UTC hours into the same local hour then. In the Eastern example, UTC times of the form 5:MM and 6:MM
both map to 1:MM when converted to Eastern, but earlier times have the fo1d attribute set to 0 and the later times
have it set to 1. For example, at the Fall back transition of 2016, we get:

214 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

>>> u0 = datetime (2016, 11, 6, 4, tzinfo=timezone.utc)
>>> for i in range(4):
u = ul0 + 1i*HOUR
t = u.astimezone (Eastern)
print (u.time (), 'UTC =', t.time(), t.tzname(), t.fold)

04:00:00 UTC = 00:00:00 EDT
05:00:00 UTC = 01:00:00 EDT
06:00:00 UTC = 01:00:00 EST
07:00:00 UTC = 02:00:00 EST

o = O O

Note that the datet ime instances that differ only by the value of the fold attribute are considered equal in
comparisons.

Applications that can’t bear wall-time ambiguities should explicitly check the value of the fold attribute or avoid
using hybrid ¢ z i n f o subclasses; there are no ambiguities when using t i me zone, or any other fixed-offset t zinfo
subclass (such as a class representing only EST (fixed offset -5 hours), or only EDT (fixed offset -4 hours)).

See also:

zoneinfo The datet ime module has a basic ¢ imezone class (for handling arbitrary fixed offsets
from UTC) and its t imezone. utc attribute (a UTC timezone instance).

zoneinfo brings the IJANA timezone database (also known as the Olson database) to Python, and
its usage is recommended.

IANA timezone database The Time Zone Database (often called tz, tzdata or zoneinfo) contains code and data that
represent the history of local time for many representative locations around the globe. It is updated periodically
to reflect changes made by political bodies to time zone boundaries, UTC offsets, and daylight-saving rules.

8.1.9 timezone Objects
The timezone class is a subclass of tzinfo, each instance of which represents a timezone defined by a fixed
offset from UTC.

Objects of this class cannot be used to represent timezone information in the locations where different offsets are
used in different days of the year or where historical changes have been made to civil time.

class datetime.timezone (offset, name=None)

The offset argument must be specified as a t imede 1t a object representing the difference between the local
time and UTC. It must be strictly between —t imedelta (hours=24) and timedelta (hours=24),
otherwise ValueError is raised.

The name argument is optional. If specified it must be a string that will be used as the value returned by the
datetime.tzname () method.

New in version 3.2.
Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.utcoffset (drf)

Return the fixed value specified when the ¢ i mezone instance is constructed.

The dt argument is ignored. The return value is a t imede ta instance equal to the difference between the
local time and UTC.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

timezone.tzname (dr)

Return the fixed value specified when the ¢ imezone instance is constructed.

If name is not provided in the constructor, the name returned by t zname (dt) is generated from the value
of the offset as follows. If offset is timedelta (0), the name is “UTC”, otherwise it is a string in the

8.1. datetime — Basic date and time types 215

https://www.iana.org/time-zones

The Python Library Reference, Release 3.11.0

format UTC+HH : MM, where * is the sign of of fset, HH and MM are two digits of offset .hours and
offset.minutes respectively.

Changed in version 3.6: Name generated from offset=timedelta (0) is now plain 'UTC', not
'UTC+00:00".

timezone.dst (dt)

Always returns None.

timezone.fromute (df)

Return dt + offset. The df argument must be an aware dat et ime instance, with tzinfo setto self.
Class attributes:

timezone.utec

The UTC timezone, t imezone (timedelta (0)).

8.1.10 strftime () and strptime () Behavior
date, datetime, and t ime objects all supporta strftime (format) method, to create a string representing
the time under the control of an explicit format string.

Conversely, the datetime. strptime () class method creates a datet ime object from a string representing a
date and time and a corresponding format string.

The table below provides a high-level comparison of strftime () versus strptime ():

strftime strptime

Usage Convert object to a string according to a | Parse a string into a datet ime object given a cor-
given format responding format

Type of | Instance method Class method

method

Method of date; datetime; time datetime

Signature strftime (format) strptime (date_string, format)

strftime () and strptime () Format Codes

The following is a list of all the format codes that the 1989 C standard requires, and these work on all platforms with
a standard C implementation.

216 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

Directive Meaning Example Notes
%a Weekday as locale’s ab- (1)
breviated name. Sun, Mon, ... Sat
(en_US);
So, Mo, ..., Sa (de_DE)
SA Weekday as locale’s full @))
fame. Sunday, Monday, ...,
Saturday (en_US);
Sonntag, Montag, ...,
Samstag (de_DE)
SwW Weekday as a decimal | 0,1, ...,6
number, where 0 is Sun-
day and 6 is Saturday.
$d Day of the month as a | 01,02, ..., 31 9
zero-padded decimal
number.
%b Month as locale’s abbrevi- (D)
ated name. Jan, Feb, ..., Dec
(en_US);
Jan, Feb, ..., Dez
(de_DE)
%B Month as locale’s full (1)
name.
January, February, ...,
December (en_US);
Januar, Februar, ...,
Dezember (de_DE)
$m Month as a zero-padded | 01,02, ..., 12 ©)]
decimal number.
Sy Year without century as | 00,01, ..., 99 9)
a zero-padded decimal
number.
%Y Year with century as a | 0001, 0002, ..., 2013, | (2)
decimal number. 2014, ..., 9998, 9999
%H Hour (24-hour clock) as | 00,01, ..., 23 9)
a zero-padded decimal
number.
%1 Hour (12-hour clock) as | 01,02, ..., 12 ©)]
a zero-padded decimal
number.
$p Locale’s equivalent of ei- (D), (3)
ther AM or PM. AM. PM (en_US);
am, pm (de_DE)
M Minute as a zero-padded | 00, 01, ..., 59 9)
decimal number.
%3 Second as a zero-padded | 00, 01, ..., 59 @), (9)
decimal number.
$f Microsecond as a decimal | 000000, 000001, ..., | (5)
number, zero-padded to 6 | 999999
digits.
%z UTC offset in the | (empty), +0000, -0400, | (6)
8.1. datetime — Basic|d&t@and tilfétypesl - | +1030, +063415, - 217
fEEfEF]] (empty | 030712.345216
string if the object is
naive).

ik N YOIV AT

The Python Library Reference, Release 3.11.0

Several additional directives not required by the C89 standard are included for convenience. These parameters all
correspond to ISO 8601 date values.

Di- Meaning Example Notes

rec-

tive

%G ISO 8601 year with century representing the year that contains the | 0001, 0002, ..., 2013, | (8)
greater part of the ISO week ($V). 2014, ..., 9998, 9999

%u ISO 8601 weekday as a decimal number where 1 is Monday. 1,2,...,7

SV ISO 8601 week as a decimal number with Monday as the first day of | 01, 02, ..., 53 (8),
the week. Week 01 is the week containing Jan 4. 9

These may not be available on all platforms when used with the st rft ime () method. The ISO 8601 year and ISO

8601 week directives are not interchangeable with the year and week number directives above. Calling st rptime ()
with incomplete or ambiguous ISO 8601 directives will raise a ValueError.

The full set of format codes supported varies across platforms, because Python calls the platform C library’s st rf—

time

() function, and platform variations are common. To see the full set of format codes supported on your

platform, consult the st rftime (3) documentation. There are also differences between platforms in handling of
unsupported format specifiers.

New in version 3.6: 3G, $u and %V were added.

Technical Detail

Broadly speaking, d.strftime (fmt) acts like the time module’s time.strftime (fmt, d.
timetuple ()) although not all objects support a t imetuple () method.

Forthe datetime. strptime () class method, the default value is 1900-01-01T00:00:00.000: any com-
ponents not specified in the format string will be pulled from the default value.*

Using

datetime.strptime (date_string, format) is equivalent to:

datetime (* (time.strptime (date_string, format) [0:6]))

except when the format includes sub-second components or timezone offset information, which are supported in
datetime.strptime butare discarded by time . strptime.

For time objects, the format codes for year, month, and day should not be used, as ¢ ime objects have no such
values. If they’re used anyway, 1900 is substituted for the year, and 1 for the month and day.

For date objects, the format codes for hours, minutes, seconds, and microseconds should not be used, as date
objects have no such values. If they’re used anyway, O is substituted for them.

For the same reason, handling of format strings containing Unicode code points that can’t be represented in the
charset of the current locale is also platform-dependent. On some platforms such code points are preserved intact in
the output, while on others st r £t ime may raise UnicodeError or return an empty string instead.

Notes
(D

2

Because the format depends on the current locale, care should be taken when making assumptions about the out-
put value. Field orderings will vary (for example, “month/day/year” versus “day/month/year”), and the output
may contain Unicode characters encoded using the locale’s default encoding (for example, if the current locale
is Ja_JP, the default encoding could be any one of eucJP, SJIS,orut£-8;use locale.getlocale ()
to determine the current locale’s encoding).

The strptime () method can parse years in the full [1, 9999] range, but years < 1000 must be zero-filled
to 4-digit width.

Changed in version 3.2: In previous versions, st rft ime () method was restricted to years >= 1900.

Changed in version 3.3: In version 3.2, st rft ime () method was restricted to years >= 1000.

4 Passing datetime.strptime ('Feb 29', '$b %d') will fail since 1900 is not a leap year.

218

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(3) When used with the strptime () method, the $p directive only affects the output hour field if the $I
directive is used to parse the hour.

(4) Unlike the t ime module, the dat et ime module does not support leap seconds.

(5) When used with the st rpt ime () method, the % £ directive accepts from one to six digits and zero pads on
the right. $£ is an extension to the set of format characters in the C standard (but implemented separately in
datetime objects, and therefore always available).

(6) For a naive object, the $z and %$Z format codes are replaced by empty strings.
For an aware object:

%z utcoffset () istransformed into a string of the form tHHMM [SS[.f££f££f]], where HH is a 2-digit
string giving the number of UTC offset hours, MM is a 2-digit string giving the number of UTC offset
minutes, SS is a 2-digit string giving the number of UTC offset seconds and £ £ £ £ £ f is a 6-digit string
giving the number of UTC offset microseconds. The £ £ £ fff part is omitted when the offset is a whole
number of seconds and both the £££f£ff and the SS part is omitted when the offset is a whole number
of minutes. For example, if utcoffset () returns timedelta (hours=-3, minutes=-30),
%z is replaced with the string ' -0330"'.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

Changed in version 3.7: When the %z directive is provided to the st rptime () method, the UTC offsets
can have a colon as a separator between hours, minutes and seconds. For example, '+01:00: 00" will be
parsed as an offset of one hour. In addition, providing 'Z ' is identical to ' +00:00".

%Z In strftime (), %$Z is replaced by an empty string if tzname () returns None; otherwise $7Z is re-
placed by the returned value, which must be a string.

strptime () only accepts certain values for $Z:
1. any value in t ime . t zname for your machine’s locale
2. the hard-coded values UTC and GMT

So someone living in Japan may have JST, UTC, and GMT as valid values, but probably not EST. It will
raise ValueError for invalid values.

Changed in version 3.2: When the %z directive is provided to the st rpt ime () method, an aware date—
t ime object will be produced. The t zinfo of the result will be set to a t imezone instance.

(7) When used with the st rptime () method, $U and $W are only used in calculations when the day of the week
and the calendar year (%Y) are specified.

(8) Similar to $U and %W, $V is only used in calculations when the day of the week and the ISO year ($G) are
specified in a st rptime () format string. Also note that $G and %Y are not interchangeable.

(9) When used with the st rptime () method, the leading zero is optional for formats $d, $m, $H, $I, $M, %53,
%$J, $U, $W, and $V. Format %y does require a leading zero.

8.2 zoneinfo — IANA time zone support

New in version 3.9.

The zoneinfo module provides a concrete time zone implementation to support the ITANA time zone database as
originally specified in PEP 615. By default, zoneinfo uses the system’s time zone data if available; if no system
time zone data is available, the library will fall back to using the first-party tzdata package available on PyPI.

See also:

Module: datetime Provides the t ime and datet ime types with which the Zone ITnfo class is designed to be
used.

Package tzdata First-party package maintained by the CPython core developers to supply time zone data via PyPI.

8.2. zoneinfo — IANA time zone support 219

https://peps.python.org/pep-0615/
https://pypi.org/project/tzdata/
https://pypi.org/project/tzdata/

The Python Library Reference, Release 3.11.0

Availability: not Emscripten, not WASI. This module does not work or is not available on WebAssembly platforms
wasm32-emscripten and wasm32-wasi. See WebAssembly platforms for more information.

8.2.1 Using ZonelInfo

ZoneInfo is a concrete implementation of the datetime. tzinfo abstract base class, and is intended to be
attached to t z inf o, either via the constructor, the datetime. replacemethodor datetime.astimezone

>>> from zoneinfo import ZonelInfo
>>> from datetime import datetime, timedelta

>>> dt = datetime (2020, 10, 31, 12, tzinfo=ZoneInfo ("America/Los_Angeles"))
>>> print (dt)
2020-10-31 12:00:00-07:00

>>> dt.tzname ()
'PDT"

Datetimes constructed in this way are compatible with datetime arithmetic and handle daylight saving time transitions
with no further intervention:

>>> dt_add = dt + timedelta (days=1)

>>> print (dt_add)
2020-11-01 12:00:00-08:00

>>> dt_add.tzname ()
'PST!

These time zones also support the fold attribute introduced in PEP 495. During offset transitions which induce
ambiguous times (such as a daylight saving time to standard time transition), the offset from before the transition is
used when fol1d=0, and the offset after the transition is used when fold=1, for example:

>>> dt = datetime (2020, 11, 1, 1, tzinfo=ZonelInfo("America/Los_Angeles"))
>>> print (dt)
2020-11-01 01:00:00-07:00

>>> print (dt.replace (fold=1))
2020-11-01 01:00:00-08:00

When converting from another time zone, the fold will be set to the correct value:

>>> from datetime import timezone
>>> LOS_ANGELES = ZoneInfo ("America/Los_Angeles™)
>>> dt_utc = datetime (2020, 11, 1, 8, tzinfo=timezone.utc)

>>> # Before the PDT -> PST transition
>>> print (dt_utc.astimezone (LOS_ANGELES))
2020-11-01 01:00:00-07:00

>>> # After the PDT —-> PST transition
>>> print ((dt_utc + timedelta (hours=1)) .astimezone (LOS_ANGELES))
2020-11-01 01:00:00-08:00

220 Chapter 8. Data Types

https://peps.python.org/pep-0495/

The Python Library Reference, Release 3.11.0

8.2.2 Data sources

The zoneinfo module does not directly provide time zone data, and instead pulls time zone information from
the system time zone database or the first-party PyPI package tzdata, if available. Some systems, including notably
Windows systems, do not have an IANA database available, and so for projects targeting cross-platform compatibility
that require time zone data, it is recommended to declare a dependency on tzdata. If neither system data nor tzdata
are available, all calls to ZoneInfo will raise ZoneInfoNotFoundError.

Configuring the data sources

When ZoneInfo (key) is called, the constructor first searches the directories specified in TZPATH for a file
matching key, and on failure looks for a match in the tzdata package. This behavior can be configured in three ways:

1. The default TZPATH when not otherwise specified can be configured at compile time.
2. TZPATH can be configured using an environment variable.

3. At runtime, the search path can be manipulated using the reset_tzpath () function.

Compile-time configuration

The default TZPATH includes several common deployment locations for the time zone database (except on Win-
dows, where there are no “well-known” locations for time zone data). On POSIX systems, downstream distributors
and those building Python from source who know where their system time zone data is deployed may change the
default time zone path by specifying the compile-time option TZPATH (or, more likely, the configure flag
-—with-tzpath), which should be a string delimited by os . pathsep.

On all platforms, the configured value is available as the TZPATH key in sysconfig.get_config_var ().

Environment configuration

When initializing TZPATH (either at import time or whenever reset_tzpath () is called with no arguments),
the zoneinfo module will use the environment variable PYTHONTZPATH, if it exists, to set the search path.

PYTHONTZPATH

This is an os.pathsep-separated string containing the time zone search path to use. It must consist of
only absolute rather than relative paths. Relative components specified in PYTHONTZPATH will not be used,
but otherwise the behavior when a relative path is specified is implementation-defined; CPython will raise
InvalidTZPathWarning, but other implementations are free to silently ignore the erroneous component
or raise an exception.

To set the system to ignore the system data and use the tzdata package instead, set PYTHONTZPATH="".

Runtime configuration

The TZ search path can also be configured at runtime using the reset_tzpath () function. This is generally not
an advisable operation, though it is reasonable to use it in test functions that require the use of a specific time zone
path (or require disabling access to the system time zones).

8.2. zoneinfo — IANA time zone support 221

https://pypi.org/project/tzdata/

The Python Library Reference, Release 3.11.0

8.2.3 The ZoneInfo class

class zoneinfo.ZoneInfo (key)

A concrete datetime.tzinfo subclass that represents an IANA time zone specified by the string key.
Calls to the primary constructor will always return objects that compare identically; put another way, barring
cache invalidation via ZoneInfo.clear_cache (), for all values of key, the following assertion will
always be true:

a = Zonelnfo
b = Zonelnfo

(key)
(
assert a is b

key
key)

key must be in the form of a relative, normalized POSIX path, with no up-level references. The constructor
will raise ValueError if a non-conforming key is passed.

If no file matching key is found, the constructor will raise ZoneInfoNotFoundError.

The ZoneInfo class has two alternate constructors:

classmethod ZonelInfo.from_£file (fobj, /, key=None)

Constructs a ZoneInfo object from a file-like object returning bytes (e.g. a file opened in binary mode or an
io.BytesIO object). Unlike the primary constructor, this always constructs a new object.

The key parameter sets the name of the zone for the purposes of __str__ () and __repr__ ().

Objects created via this constructor cannot be pickled (see pickling).

classmethod ZoneInfo.no_cache (key)

An alternate constructor that bypasses the constructor’s cache. It is identical to the primary constructor, but
returns a new object on each call. This is most likely to be useful for testing or demonstration purposes, but it
can also be used to create a system with a different cache invalidation strategy.

Objects created via this constructor will also bypass the cache of a deserializing process when unpickled.

Caution: Using this constructor may change the semantics of your datetimes in surprising ways, only use
it if you know that you need to.

The following class methods are also available:

classmethod ZoneInfo.clear_ cache (* only_keys=None)

A method for invalidating the cache on the ZoneInfo class. If no arguments are passed, all caches are
invalidated and the next call to the primary constructor for each key will return a new instance.

If an iterable of key names is passed to the only_keys parameter, only the specified keys will be removed
from the cache. Keys passed to only_keys but not found in the cache are ignored.

Warning: Invoking this function may change the semantics of datetimes using ZoneInfo in surprising
ways; this modifies process-wide global state and thus may have wide-ranging effects. Only use it if you
know that you need to.

The class has one attribute:

ZonelInfo.key

This is a read-only artribute that returns the value of key passed to the constructor, which should be a lookup
key in the JANA time zone database (e.g. America/New_York, Europe/Paris or Asia/Tokyo).

For zones constructed from file without specifying a key parameter, this will be set to None.

Note: Although it is a somewhat common practice to expose these to end users, these values are designed
to be primary keys for representing the relevant zones and not necessarily user-facing elements. Projects like

222

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

CLDR (the Unicode Common Locale Data Repository) can be used to get more user-friendly strings from
these keys.

String representations

The string representation returned when calling st r ona Zone Info object defaults to using the ZoneInfo. key
attribute (see the note on usage in the attribute documentation):

>>> zone = ZonelInfo("Pacific/Kwajalein")
>>> str (zone)
'Pacific/Kwajalein'

>>> dt = datetime (2020, 4, 1, 3, 15, tzinfo=zone)
>>> f"/dt.isoformat () [{dt.tzinfo /] "
'2020-04-01T03:15:00+12:00 [Pacific/Kwajalein]'

For objects constructed from a file without specifying a key parameter, st r falls back to calling repr (). Zone-
Info’s repr is implementation-defined and not necessarily stable between versions, but it is guaranteed not to be a
valid ZoneInfo key.

Pickle serialization

Rather than serializing all transition data, ZoneInfo objects are serialized by key, and ZoneInfo objects con-
structed from files (even those with a value for key specified) cannot be pickled.

The behavior of a ZoneInfo file depends on how it was constructed:

1. ZoneInfo (key): When constructed with the primary constructor, a Zone Info object is serialized by key,
and when deserialized, the deserializing process uses the primary and thus it is expected that these are expected
to be the same object as other references to the same time zone. For example, if europe_berlin_pkl
is a string containing a pickle constructed from ZoneInfo ("Europe/Berlin"), one would expect the
following behavior:

>>> a = ZonelInfo ("Europe/Berlin")

>>> b = pickle.loads (europe_berlin_pkl)
>>> a is b

True

2. zZoneInfo.no_cache (key): When constructed from the cache-bypassing constructor, the ZoneInfo
object is also serialized by key, but when deserialized, the deserializing process uses the cache bypassing
constructor. If europe_berlin_pkl_nc is a string containing a pickle constructed from ZoneInfo.
no_cache ("Europe/Berlin"), one would expect the following behavior:

>>> a = ZoneInfo ("Europe/Berlin")

>>> b = pickle.loads (europe_berlin_pkl_nc)
>>> a is b

False

3. ZoneInfo.from_file (fobj, /, key=None): When constructed from a file, the ZoneInfo object
raises an exception on pickling. If an end user wants to pickle a ZoneInfo constructed from a file, it is
recommended that they use a wrapper type or a custom serialization function: either serializing by key or
storing the contents of the file object and serializing that.

This method of serialization requires that the time zone data for the required key be available on both the serializing
and deserializing side, similar to the way that references to classes and functions are expected to exist in both the
serializing and deserializing environments. It also means that no guarantees are made about the consistency of results
when unpickling a Zone Info pickled in an environment with a different version of the time zone data.

8.2. zoneinfo — IANA time zone support 223

The Python Library Reference, Release 3.11.0

8.2.4 Functions

zoneinfo.available_timezones ()
Get a set containing all the valid keys for IANA time zones available anywhere on the time zone path. This is
recalculated on every call to the function.

This function only includes canonical zone names and does not include “special” zones such as those under the
posix/ and right/ directories, or the posixrules zone.

Caution: This function may open a large number of files, as the best way to determine if a file on the time
zone path is a valid time zone is to read the “magic string” at the beginning.

Note: These values are not designed to be exposed to end-users; for user facing elements, applications should
use something like CLDR (the Unicode Common Locale Data Repository) to get more user-friendly strings.
See also the cautionary note on ZoneInfo. key.

zoneinfo.reset_tzpath (fo=None)

Sets or resets the time zone search path (TZPATH) for the module. When called with no arguments, TZPATH
is set to the default value.

Calling reset_tzpath will not invalidate the Zone Info cache, and so calls to the primary ZoneInfo
constructor will only use the new TZPATH in the case of a cache miss.

The to parameter must be a sequence of strings or os.PathLike and not a string, all of which must be
absolute paths. ValueError will be raised if something other than an absolute path is passed.

8.2.5 Globals

zoneinfo.TZPATH

A read-only sequence representing the time zone search path — when constructing a ZoneInfo from a key,
the key is joined to each entry in the TZPATH, and the first file found is used.

TZPATH may contain only absolute paths, never relative paths, regardless of how it is configured.

The object that zoneinfo.TZPATH points to may change in response toacallto reset_tzpath (),soit
is recommended to use zoneinfo.TZPATH rather than importing TZPATH from zoneinfo or assigning
a long-lived variable to zoneinfo.TZPATH.

For more information on configuring the time zone search path, see Configuring the data sources.

8.2.6 Exceptions and warnings

exception zoneinfo.ZoneInfoNotFoundError
Raised when construction of a ZoneInfo object fails because the specified key could not be found on the
system. This is a subclass of KeyError.

exception zoneinfo.InvalidTZPathWarning
Raised when PYTHONTZPATH contains an invalid component that will be filtered out, such as a relative path.

224 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

8.3 calendar — General calendar-related functions

Source code: Lib/calendar.py

This module allows you to output calendars like the Unix cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Use setfirstweekday () to set the first day of the week to Sunday (6) or to any
other weekday. Parameters that specify dates are given as integers. For related functionality, see also the datet ime
and t ime modules.

The functions and classes defined in this module use an idealized calendar, the current Gregorian calendar extended
indefinitely in both directions. This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and
Reingold’s book “Calendrical Calculations”, where it’s the base calendar for all computations. Zero and negative years
are interpreted as prescribed by the ISO 8601 standard. Year O is 1 BC, year -1 is 2 BC, and so on.
class calendar.Calendar (firstweekday=0)
Creates a Calendar object. firstweekday is an integer specifying the first day of the week. MONDAY is O
(the default), SUNDAY is 6.

A Calendar object provides several methods that can be used for preparing the calendar data for formatting.
This class doesn’t do any formatting itself. This is the job of subclasses.

Calendar instances have the following methods:

iterweekdays ()
Return an iterator for the week day numbers that will be used for one week. The first value from the
iterator will be the same as the value of the i rstweekday property.

itermonthdates (year, month)
Return an iterator for the month month (1-12) in the year year. This iterator will return all days (as
datetime. date objects) for the month and all days before the start of the month or after the end of
the month that are required to get a complete week.

itermonthdays (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datetime.date range. Days returned will simply be day of the month numbers.
For the days outside of the specified month, the day number is O.

itermonthdays2 (year, month)
Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datet ime. date range. Days returned will be tuples consisting of a day of the month
number and a week day number.

itermonthdays3 (year, month)

Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datetime. date range. Days returned will be tuples consisting of a year, a month
and a day of the month numbers.

New in version 3.7.

itermonthdays4 (year, month)

Return an iterator for the month month in the year year similar to itermonthdates (), but not
restricted by the datet ime. date range. Days returned will be tuples consisting of a year, a month, a
day of the month, and a day of the week numbers.

New in version 3.7.

monthdatescalendar (year, month)

Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven
datetime.date objects.

8.3. calendar — General calendar-related functions 225

https://github.com/python/cpython/tree/3.11/Lib/calendar.py

The Python Library Reference, Release 3.11.0

monthdays2calendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven tuples
of day numbers and weekday numbers.

monthdayscalendar (year, month)
Return a list of the weeks in the month month of the year as full weeks. Weeks are lists of seven day
numbers.

yeardatescalendar (year, width=3)
Return the data for the specified year ready for formatting. The return value is a list of month rows. Each
month row contains up to width months (defaulting to 3). Each month contains between 4 and 6 weeks
and each week contains 1-7 days. Days are datetime. date objects.

yeardays2calendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are tuples of day numbers and weekday numbers. Day numbers outside this
month are zero.

yeardayscalendar (year, width=3)
Return the data for the specified year ready for formatting (similar to yeardatescalendar ()).
Entries in the week lists are day numbers. Day numbers outside this month are zero.

class calendar.TextCalendar (firstweekday=0)

This class can be used to generate plain text calendars.
TextCalendar instances have the following methods:

formatmonth (theyear, themonth, w=0, [=0)
Return a month’s calendar in a multi-line string. If wis provided, it specifies the width of the date columns,
which are centered. If / is given, it specifies the number of lines that each week will use. Depends on the
first weekday as specified in the constructor or set by the set firstweekday () method.

prmonth (theyear, themonth, w=0, [=0)

Print a month’s calendar as returned by formatmonth ().

formatyear (theyear, w=2, 1=1, c=6, m=3)
Return a m-column calendar for an entire year as a multi-line string. Optional parameters w, [, and ¢
are for date column width, lines per week, and number of spaces between month columns, respectively.
Depends on the first weekday as specified in the constructor or set by the setfirstweekday ()
method. The earliest year for which a calendar can be generated is platform-dependent.

pryear (theyear, w=2, =1, c=6, m=3)

Print the calendar for an entire year as returned by formatyear ().

class calendar.HTMLCalendar (firstweekday=0)

This class can be used to generate HTML calendars.
HTMLCalendar instances have the following methods:

formatmonth (theyear, themonth, withyear="True)
Return a month’s calendar as an HTML table. If withyear is true the year will be included in the header,
otherwise just the month name will be used.

formatyear (theyear, width=3)
Return a year’s calendar as an HTML table. width (defaulting to 3) specifies the number of months per
row.

formatyearpage (theyear, width=3, css='calendar.css', encoding=None)

Return a year’s calendar as a complete HTML page. width (defaulting to 3) specifies the number of
months per row. css is the name for the cascading style sheet to be used. None can be passed if no style
sheet should be used. encoding specifies the encoding to be used for the output (defaulting to the system
default encoding).

226 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

HTMLCalendar has the following attributes you can override to customize the CSS classes used by the
calendar:

cssclasses
A list of CSS classes used for each weekday. The default class list is:

cssclasses = ["mon", "tue", "wed", "thu", "fri", "sat", "sun"]

more styles can be added for each day:

cssclasses = ["mon text-bold", "tue", "wed", "thu", "fri", "sat", "sun red

. HJ

Note that the length of this list must be seven items.

cssclass_noday

The CSS class for a weekday occurring in the previous or coming month.
New in version 3.7.

cssclasses_weekday head

A list of CSS classes used for weekday names in the header row. The default is the same as css—
classes.

New in version 3.7.

cssclass_month_head
The month’s head CSS class (used by formatmonthname ()). The default value is "month".

New in version 3.7.

cssclass_month
The CSS class for the whole month’s table (used by formatmonth ()). The default value is "month™".

New in version 3.7.

cssclass_year
The CSS class for the whole year’s table of tables (used by formatyear ()). The default value is
"year".

New in version 3.7.

cssclass_year_head
The CSS class for the table head for the whole year (used by formatyear ()). The default value is
" ye ar n .

New in version 3.7.

Note that although the naming for the above described class attributes is singular (e.g. cssclass_month
cssclass_noday), one can replace the single CSS class with a space separated list of CSS classes, for
example:

"text-bold text-red"

Here is an example how HTMLCalendar can be customized:

class CustomHTMLCal (calendar.HTMLCalendar) :
cssclasses = [style + " text-nowrap" for style in
calendar.HTMLCalendar.cssclasses]
cssclass_month_head = "text-center month-head"
cssclass_month = "text-center month"
cssclass_year = "text-italic lead"

8.3. calendar — General calendar-related functions 227

The Python Library Reference, Release 3.11.0

class calendar.LocaleTextCalendar (firstweekday=0, locale=None)
This subclass of TextCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

class calendar.LocaleHTMLCalendar (firstweekday=0, locale=None)

This subclass of HTMLCalendar can be passed a locale name in the constructor and will return month and
weekday names in the specified locale.

Note: The constructor, formatweekday () and formatmonthname () methods of these two classes tem-
porarily change the LC_TIME locale to the given locale. Because the current locale is a process-wide setting, they
are not thread-safe.

For simple text calendars this module provides the following functions.

calendar.setfirstweekday (weekday)

Sets the weekday (0 is Monday, 6 is Sunday) to start each week. The values MONDAY, TUESDAY, WEDNE S —
DAY, THURSDAY, FRIDAY, SATURDAY, and SUNDAY are provided for convenience. For example, to set
the first weekday to Sunday:

import calendar
calendar.setfirstweekday (calendar.SUNDAY)

calendar.firstweekday ()

Returns the current setting for the weekday to start each week.

calendar.isleap (year)

Returns True if year is a leap year, otherwise F'alse.
calendar.leapdays (yl, y2)
Returns the number of leap years in the range from y/ to y2 (exclusive), where y/ and y2 are years.
This function works for ranges spanning a century change.
calendar .weekday (year, month, day)
Returns the day of the week (0 is Monday) for year (1970-...), month (1-12), day (1-31).
calendar.weekheader (n)

Return a header containing abbreviated weekday names. n specifies the width in characters for one weekday.

calendar .monthrange (year, month)

Returns weekday of first day of the month and number of days in month, for the specified year and month.

calendar .monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month are
represented by zeros. Each week begins with Monday unless set by set firstweekday ().

calendar .prmonth (theyear, themonth, w=0, [=0)

Prints a month’s calendar as returned by month ().
calendar .month (theyear, themonth, w=0, [=0)

Returns a month’s calendar in a multi-line string using the formatmonth () of the TextCalendar class.
calendar.preal (year, w=0, [=0, c=6, m=3)

Prints the calendar for an entire year as returned by calendar ().
calendar.calendar (year, w=2, =1, c=6, m=3)

Returns a 3-column calendar for an entire year as a multi-line string using the formatyear () of the
TextCalendar class.

228 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

calendar.timegm (tuple)

An unrelated but handy function that takes a time tuple such as returned by the gmt ime () function in the
t ime module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the
POSIX encoding. In fact, t ime.gmt ime () and t imegm () are each others’ inverse.

The calendar module exports the following data attributes:

calendar.day_name

An array that represents the days of the week in the current locale.

calendar.day_abbr
An array that represents the abbreviated days of the week in the current locale.

calendar.month_name
An array that represents the months of the year in the current locale. This follows normal convention of January
being month number 1, so it has a length of 13 and month_name [0] is the empty string.
calendar .month_abbr
An array that represents the abbreviated months of the year in the current locale. This follows normal conven-
tion of January being month number 1, so it has a length of 13 and month_abbr [0] is the empty string.
calendar .MONDAY
calendar.TUESDAY
calendar .WEDNESDAY
calendar.THURSDAY
calendar.FRIDAY
calendar.SATURDAY
calendar.SUNDAY
Aliases for day numbers, where MONDAY is O and SUNDAY is 6.

See also:
Module datetime Object-oriented interface to dates and times with similar functionality to the t ime module.

Module time Low-level time related functions.

8.4 collections — Container datatypes

Source code: Lib/collections/__init__.py

This module implements specialized container datatypes providing alternatives to Python’s general purpose built-in
containers, dict, 1ist, set,and tuple.

namedtuple () | factory function for creating tuple subclasses with named fields
deque list-like container with fast appends and pops on either end
ChainMap dict-like class for creating a single view of multiple mappings
Counter dict subclass for counting hashable objects

OrderedDict dict subclass that remembers the order entries were added
defaultdict dict subclass that calls a factory function to supply missing values
UserDict wrapper around dictionary objects for easier dict subclassing
UserList wrapper around list objects for easier list subclassing
UserString wrapper around string objects for easier string subclassing

8.4. collections — Container datatypes 229

https://github.com/python/cpython/tree/3.11/Lib/collections/__init__.py

The Python Library Reference, Release 3.11.0

8.4.1 CchainMap objects

New in version 3.3.

A ChainMap class is provided for quickly linking a number of mappings so they can be treated as a single unit. It
is often much faster than creating a new dictionary and running multiple update () calls.

The class can be used to simulate nested scopes and is useful in templating.

class collections.ChainMap (*maps)

A ChainMap groups multiple dicts or other mappings together to create a single, updateable view. If no maps
are specified, a single empty dictionary is provided so that a new chain always has at least one mapping.

The underlying mappings are stored in a list. That list is public and can be accessed or updated using the maps
attribute. There is no other state.

Lookups search the underlying mappings successively until a key is found. In contrast, writes, updates, and
deletions only operate on the first mapping.

A ChainMap incorporates the underlying mappings by reference. So, if one of the underlying mappings gets
updated, those changes will be reflected in Cha inMap.

All of the usual dictionary methods are supported. In addition, there is a maps attribute, a method for creating
new subcontexts, and a property for accessing all but the first mapping:

maps
A user updateable list of mappings. The list is ordered from first-searched to last-searched. It is the only
stored state and can be modified to change which mappings are searched. The list should always contain
at least one mapping.

new_child (m=None, **kwargs)

Returns a new ChainMap containing a new map followed by all of the maps in the current instance. If
m is specified, it becomes the new map at the front of the list of mappings; if not specified, an empty dict
is used, so that a call to d.new_child () is equivalent to: ChainMap ({}, *d.maps). If any
keyword arguments are specified, they update passed map or new empty dict. This method is used for
creating subcontexts that can be updated without altering values in any of the parent mappings.

Changed in version 3.4: The optional m parameter was added.
Changed in version 3.10: Keyword arguments support was added.

parents

Property returning a new ChainMap containing all of the maps in the current instance except the first
one. This is useful for skipping the first map in the search. Use cases are similar to those for the nonlo-
cal keyword used in nested scopes. The use cases also parallel those for the built-in super () function.
A reference to d.parents is equivalent to: ChainMap (*d.maps[1:]).

Note, the iteration order of a ChainMap () is determined by scanning the mappings last to first:

>>> baseline = {'music': 'bach', 'art': 'rembrandt'}

>>> adjustments = {'art': 'van gogh', 'opera': 'carmen'}
>>> list (ChainMap (adjustments, baseline))

['music', 'art', 'opera']

This gives the same ordering as a series of dict.update () calls starting with the last mapping:

>>> combined = baseline.copy ()
>>> combined.update (adjustments)
>>> list (combined)

['music', 'art', 'opera']

Changed in version 3.9: Added support for | and | = operators, specified in PEP 584.

See also:

230

Chapter 8. Data Types

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.0

¢ The MultiContext class in the Enthought CodeTools package has options to support writing to any mapping in
the chain.

» Django’s Context class for templating is a read-only chain of mappings. It also features pushing and popping
of contexts similar to the new_child () method and the parent s property.

* The Nested Contexts recipe has options to control whether writes and other mutations apply only to the first
mapping or to any mapping in the chain.

* A greatly simplified read-only version of Chainmap.
ChainMap Examples and Recipes

This section shows various approaches to working with chained maps.

Example of simulating Python’s internal lookup chain:

import builtins
pylookup = ChainMap (locals (), globals (), vars(builtins))

Example of letting user specified command-line arguments take precedence over environment variables which in turn
take precedence over default values:

import os, argparse
defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()

parser.add_argument ('-u', '——user')

parser.add_argument ('-c', '—-color')

namespace = parser.parse_args ()

command_line_args = {k: v for k, v in vars (namespace).items() if v is not None}

combined = ChainMap (command_line_args, os.environ, defaults)
print (combined['color'])
print (combined['user'])

Example patterns for using the ChainMap class to simulate nested contexts:

c = ChainMap () # Create root context

d = c.new_child() # Create nested child context

e = c.new_child() # Child of ¢, independent from d

e.maps[0] # Current context dictionary —-- like Python's locals()
e.maps[—1] # Root context —-- like Python's globals/()

e.parents # Enclosing context chain —-- like Python's nonlocals
dl'x"'"] =1 # Set value 1in current context

dl'x"] # Get first key in the chain of contexts

del d['x"] # Delete from current context

list (d) # All nested values

k in d # Check all nested values

len (d) # Number of nested values

d.items () # All nested items

dict (d) # Flatten into a regular dictionary

The ChainMap class only makes updates (writes and deletions) to the first mapping in the chain while lookups will
search the full chain. However, if deep writes and deletions are desired, it is easy to make a subclass that updates
keys found deeper in the chain:

class DeepChainMap (ChainMap) :
'Variant of ChainMap that allows direct updates to inner scopes'

(continues on next page)

8.4. collections — Container datatypes 231

https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools
https://github.com/django/django/blob/main/django/template/context.py
https://code.activestate.com/recipes/577434/
https://code.activestate.com/recipes/305268/

The Python Library Reference, Release 3.11.0

(continued from previous page)

def _ setitem__ (self, key, value):
for mapping in self.maps:
if key in mapping:

mappingl[key] = value
return
self.maps[0] [key] = value

def _ _delitem__ (self, key):
for mapping in self.maps:
if key in mapping:
del mappinglkey]
return
raise KeyError (key)

>>> d = DeepChainMap ({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})
>>> d['lion'] = 'orange' # update an existing key two levels down

>>> d['snake'] = 'red' # new keys get added to the topmost dict

>>> del d['elephant'] # remove an existing key one level down

>>> d # display result

DeepChainMap ({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

8.4.2 Counter objects

A counter tool is provided to support convenient and rapid tallies. For example:

>>>
>>>
>>>

>>>

Tally occurrences of words in a list

cnt = Counter ()

for word in ['red', 'blue', 'red', 'green', 'blue', 'blue'l]:
cnt [word] += 1

cnt

Counter ({'blue': 3, 'red': 2, 'green': 1})

>>>
>>>
>>>
>>>

Find the ten most common words in Hamlet

import re

words = re.findall (r'\w+', open('hamlet.txt').read().lower ())
Counter (words) .most__common (10)

[('the', 1143), ('and', 966), ('to', 762), ('of', 669), ('i', 631),
('you', 554), ('a', 546), ('my', 514), ('hamlet', 471), ('in', 451)]

class collections.Counter ([iterable-or-mapping])

A Counteris a dict subclass for counting hashable objects. It is a collection where elements are stored
as dictionary keys and their counts are stored as dictionary values. Counts are allowed to be any integer value
including zero or negative counts. The Counter class is similar to bags or multisets in other languages.

Elements are counted from an iterable or initialized from another mapping (or counter):

>>> ¢ = Counter () # a new, empty counter

>>> ¢ = Counter ('gallahad") # a new counter from an iterable
>>> ¢ = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

Counter objects have a dictionary interface except that they return a zero count for missing items instead of
raising a KeyError:

>>> ¢ = Counter(['eggs', 'ham'])

>>> c['bacon'] # count of a missing element is.
—Zero

0

Setting a count to zero does not remove an element from a counter. Use de 1 to remove it entirely:

232

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

>>> c['sausage'] = 0 # counter entry with a zero count
>>> del c|['sausage'] # del actually removes the entry

New in version 3.1.

Changed in version 3.7: As a dict subclass, Counter inherited the capability to remember insertion order.
Math operations on Counter objects also preserve order. Results are ordered according to when an element is
first encountered in the left operand and then by the order encountered in the right operand.

Counter objects support additional methods beyond those available for all dictionaries:

elements ()

Return an iterator over elements repeating each as many times as its count. Elements are returned in the
order first encountered. If an element’s count is less than one, e lements () will ignore it.

>>> c = Counter(a=4, b
>>> sorted(c.elements(

2, c=0, d=-2)
)
[VaV, ’aV, YaV, 'a’, L}

)
b', 'b']

most__common ([n])

Return a list of the » most common elements and their counts from the most common to the least. If n
is omitted or None, most_ common () returns all elements in the counter. Elements with equal counts
are ordered in the order first encountered:

>>> Counter ('abracadabra') .most_common (3)
[(ta', 5), ('b', 2), ('r', 2)]

subtract ([itemble-or-mapping])

Elements are subtracted from an iterable or from another mapping (or counter). Like dict . update ()
but subtracts counts instead of replacing them. Both inputs and outputs may be zero or negative.

>>> C Counter
>>> d = Counter
c

(, b=2, c=0, d=-2)
(b=2, c=3
>>> .subtract (d

a=4
a=1,
)
>>> ¢

Counter({'a': 3, 'b': 0, 'c': -3, 'd': -6})

New in version 3.2.

total ()

Compute the sum of the counts.

>>> ¢ = Counter (a=10, b=5, c=0)
>>> c.total ()
15

New in version 3.10.

The usual dictionary methods are available for Counter objects except for two which work differently for
counters.

fromkeys (iterable)

This class method is not implemented for Counter objects.
update ([itemble-or-mapping])

Elements are counted from an iterable or added-in from another mapping (or counter). Like dict.
update () but adds counts instead of replacing them. Also, the iferable is expected to be a sequence of
elements, not a sequence of (key, value) pairs.

Counters support rich comparison operators for equality, subset, and superset relationships: ==, !=, <, <=, >, >=,
All of those tests treat missing elements as having zero counts so that Counter (a=1) == Counter (a=1,
b=0) returns true.

8.4. collections — Container datatypes 233

The Python Library Reference, Release 3.11.0

New in version 3.10: Rich comparison operations were added.

Changed in version 3.10: In equality tests, missing elements are treated as having zero counts. Formerly,
Counter (a=3) and Counter (a=3, b=0) were considered distinct.

Common patterns for working with Counter objects:

c.total () # total of all counts

c.clear () # reset all counts

list (c) # list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs)) # convert from a list of (elem, cnt) pairs
c.most_common () [:-—n-1:-1] # n least common elements

+c # remove zero and negative counts

Several mathematical operations are provided for combining Counter objects to produce multisets (counters that
have counts greater than zero). Addition and subtraction combine counters by adding or subtracting the counts of
corresponding elements. Intersection and union return the minimum and maximum of corresponding counts. Equality
and inclusion compare corresponding counts. Each operation can accept inputs with signed counts, but the output
will exclude results with counts of zero or less.

>>> ¢ = Counter (a=3, b=1

>>> d = Counter (a=1, b=2)

>>> ¢ + d # add two counters together: cl[x] + d[x]
Counter({'a': 4, 'b': 3})

>>> ¢ - d # subtract (keeping only positive counts)
Counter ({'a': 2})

>>> ¢ & d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})

>>> ¢ | d # union: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

>>> ¢ == # equality: c[x] == d[x]

False

>>> ¢ <= d # inclusion: cl[x] <= d[x]

False

Unary addition and subtraction are shortcuts for adding an empty counter or subtracting from an empty counter.

>>> ¢ = Counter (a=2, b=-4)
>>> +c

Counter ({'a': 2})

>>> —C

Counter ({'b': 4})

New in version 3.3: Added support for unary plus, unary minus, and in-place multiset operations.

Note: Counters were primarily designed to work with positive integers to represent running counts; however, care
was taken to not unnecessarily preclude use cases needing other types or negative values. To help with those use
cases, this section documents the minimum range and type restrictions.

e The Counter class itself is a dictionary subclass with no restrictions on its keys and values. The values are
intended to be numbers representing counts, but you could store anything in the value field.

e The most_common () method requires only that the values be orderable.

* For in-place operations such as c [key] += 1, the value type need only support addition and subtraction.
So fractions, floats, and decimals would work and negative values are supported. The same is also true for
update () and subtract () which allow negative and zero values for both inputs and outputs.

» The multiset methods are designed only for use cases with positive values. The inputs may be negative or zero,
but only outputs with positive values are created. There are no type restrictions, but the value type needs to
support addition, subtraction, and comparison.

234 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

e The elements () method requires integer counts. It ignores zero and negative counts.

See also:
¢ Bag class in Smalltalk.
» Wikipedia entry for Multisets.
e C++ multisets tutorial with examples.

» For mathematical operations on multisets and their use cases, see Knuth, Donald. The Art of Computer Pro-
gramming Volume II, Section 4.6.3, Exercise 19.

e To enumerate all distinct multisets of a given size over a given set of elements, see itertools.
combinations_with_replacement ():

map (Counter, combinations_with_replacement ('ABC', 2)) # —--> AA AB AC BB BC CC

8.4.3 deque objects

class collections.deque ([iterable[, maxlen]])
Returns a new deque object initialized left-to-right (using append ()) with data from iterable. If iterable is
not specified, the new deque is empty.

Deques are a generalization of stacks and queues (the name is pronounced “deck” and is short for “double-
ended queue”). Deques support thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same O(1) performance in either direction.

Though 11 st objects support similar operations, they are optimized for fast fixed-length operations and incur
O(n) memory movement costs for pop (0) and insert (0, v) operations which change both the size and
position of the underlying data representation.

If maxlen is not specified or is None, deques may grow to an arbitrary length. Otherwise, the deque is bounded
to the specified maximum length. Once a bounded length deque is full, when new items are added, a corre-
sponding number of items are discarded from the opposite end. Bounded length deques provide functionality
similar to the tail filter in Unix. They are also useful for tracking transactions and other pools of data where
only the most recent activity is of interest.

Deque objects support the following methods:

append (x)
Add x to the right side of the deque.

appendleft (x)
Add x to the left side of the deque.

clear ()

Remove all elements from the deque leaving it with length 0.

copy ()
Create a shallow copy of the deque.

New in version 3.5.

count (x)

Count the number of deque elements equal to x.
New in version 3.2.

extend (iterable)

Extend the right side of the deque by appending elements from the iterable argument.

8.4. collections — Container datatypes 235

https://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
https://en.wikipedia.org/wiki/Multiset
http://www.java2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

The Python Library Reference, Release 3.11.0

extendleft (iterable)

Extend the left side of the deque by appending elements from iferable. Note, the series of left appends
results in reversing the order of elements in the iterable argument.

index (x[, start[, stop]])

Return the position of x in the deque (at or after index start and before index sfop). Returns the first
match or raises ValueError if not found.

New in version 3.5.

insert (i, x)

Insert x into the deque at position i.
If the insertion would cause a bounded deque to grow beyond maxlen, an TndexError is raised.
New in version 3.5.

pop ()

Remove and return an element from the right side of the deque. If no elements are present, raises an
IndexError

popleft ()

Remove and return an element from the left side of the deque. If no elements are present, raises an
IndexError.

remove (value)

Remove the first occurrence of value. If not found, raises a ValueError.

reverse ()

Reverse the elements of the deque in-place and then return None.
New in version 3.2.

rotate (n=1)

Rotate the deque n steps to the right. If n is negative, rotate to the left.

When the deque is not empty, rotating one step to the right is equivalent to d.appendleft (d.
pop ()), and rotating one step to the left is equivalent to d . append (d.popleft ()).

Deque objects also provide one read-only attribute:

maxlen

Maximum size of a deque or None if unbounded.

New in version 3.1.

In addition to the above, deques support iteration, pickling, len (d), reversed (d), copy.copy (d), copy .
deepcopy (d), membership testing with the in operator, and subscript references such as d[0] to access the
first element. Indexed access is O(1) at both ends but slows to O(n) in the middle. For fast random access, use lists

instead.

Starting in version 3.5, deques support __add__ (),__mul__ (),and __imul__ ().

Example:

>>> from collections import deque

>>> d = deque('ghi'") # make a new deque with three items

>>> for elem in d: # iterate over the deque's elements

.. print (elem.upper())

G

H

I

>>> d.append('j") # add a new entry to the right side

>>> d.appendleft ('f") # add a new entry to the left side
(continues on next page)

236 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> d # show the representation of the deque
deque([lfY, 'gl, 'hl, 'i', 'j'})

>>> d.pop () # return and remove the rightmost item
ljl

>>> d.popleft () # return and remove the leftmost item
lfl

>>> list (d) # 1list the contents of the deque
['g', 'h', 'i']

>>> d[0] # peek at leftmost item

gt

>>> d[-1] # peek at rightmost item

lil

>>> list (reversed(d)) # list the contents of a deque in reverse
['i', 'h', 'g']

>>> 'h' in d # search the deque

True

>>> d.extend('jkl") # add multiple elements at once

>>> d

deque(['g', 'h', 'i', 'J', 'k', '1'])

>>> d.rotate (1) # right rotation

>>> d

deque (['1', 'g', 'h', 'i', '3', 'k'])

>>> d.rotate (-1) # left rotation

>>> d

deque([lgl’ lhll Iill vjl’ 'k'l vlv])

>>> deque (reversed (d)) # make a new deque in reverse order
deque(['1l', 'k', '3', 'i', 'h', 'g'l)

>>> d.clear () # empty the deque

>>> d.pop () # cannot pop from an empty deque

Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop ()
IndexError: pop from an empty deque

>>> d.extendleft ('abc') # extendleft () reverses the input order
>>> d
deque(['c', 'b', 'a'l)

deque Recipes

This section shows various approaches to working with deques.

Bounded length deques provide functionality similar to the tail filter in Unix:

def tail (filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque (f, n)

Another approach to using deques is to maintain a sequence of recently added elements by appending to the right and
popping to the left:

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) ——-> 40.0 42.0 45.0 43.0
https://en.wikipedia.org/wiki/Moving_average
it = iter (iterable)
d = deque(itertools.islice(it, n-1))

(continues on next page)

8.4. collections — Container datatypes 237

The Python Library Reference, Release 3.11.0

(continued from previous page)

d.appendleft (0)

s = sum(d)

for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n

A round-robin scheduler can be implemented with input iterators stored in a deque. Values are yielded from the
active iterator in position zero. If that iterator is exhausted, it can be removed with popleft (); otherwise, it can
be cycled back to the end with the rotate () method:

def roundrobin (*iterables) :

"roundrobin ('ABC', 'D', 'EF') -—-> ADE B F C"
iterators = deque(map(iter, iterables))
while iterators:

try:

while True:
yield next (iterators([0])
iterators.rotate (-1)
except Stoplteration:
Remove an exhausted iterator.
iterators.popleft ()

The rotate () method provides a way to implement deque slicing and deletion. For example, a pure Python
implementation of del d[n] relies on the rotate () method to position elements to be popped:

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

To implement deqgue slicing, use a similar approach applying rotate () to bring a target element to the left side of
the deque. Remove old entries with popleft (), add new entries with extend (), and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style stack manipulations such as dup, drop,
swap, over, pick, rot,and roll.

8.4.4 defaultdict objects

class collections.defaultdict (default_factory=None, /[,])

Return a new dictionary-like object. defaultdict is asubclass of the built-in dict class. It overrides one
method and adds one writable instance variable. The remaining functionality is the same as for the dict class
and is not documented here.

The first argument provides the initial value for the default_factory attribute; it defaults to None. All
remaining arguments are treated the same as if they were passed to the dict constructor, including keyword
arguments.

defaultdict objects support the following method in addition to the standard dict operations:

__missing__ (key)

If the default_rfactory attribute is None, this raises a KeyError exception with the key as ar-
gument.

If default_rfactory is not None, it is called without arguments to provide a default value for the
given key, this value is inserted in the dictionary for the key, and returned.

If calling default_ factory raises an exception this exception is propagated unchanged.

This method is called by the __getitem__ () method of the dict class when the requested key is
not found; whatever it returns or raises is then returned or raised by __getitem__ ().

238 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Round-robin_scheduling

The Python Library Reference, Release 3.11.0

Note that _ _missing__ () is not called for any operations besides __getitem__ (). This
means that get () will, like normal dictionaries, return None as a default rather than using de-—
fault_factory.

defaultdict objects support the following instance variable:

default_factory

This attribute is used by the __missing__ () method; it is initialized from the first argument to the
constructor, if present, or to None, if absent.

Changed in version 3.9: Added merge (|) and update (| =) operators, specified in PEP 584.

defaultdict Examples

Using 1istasthe default_factory,itis easy to group a sequence of key-value pairs into a dictionary of lists:

>>> g [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]
>>> d = defaultdict (list)
>>> for k, v in s:

d[k] .append(v)

>>> sorted(d.items())
[("blue', [2, 4]1), ('red', [11), ('yellow', [1, 31)]

When each key is encountered for the first time, it is not already in the mapping; so an entry is automatically created
using the default_ factory function which returns an empty 1ist. The 1ist.append () operation then
attaches the value to the new list. When keys are encountered again, the look-up proceeds normally (returning the
list for that key) and the 1ist .append () operation adds another value to the list. This technique is simpler and
faster than an equivalent technique using dict.setdefault ():

>>> d = {}
>>> for k, v in s:
d.setdefault (k, []).append(v)

>>> sorted(d.items())
[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

Setting the default_factory to int makes the defaultdict useful for counting (like a bag or multiset in
other languages):

>>> s = 'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

d[k] += 1

>>> sorted(d.items ())
[¢ra', 4), ('m', 1), ('p'y 2), ('s', 4)]

When a letter is first encountered, it is missing from the mapping, so the default_factory functioncalls int ()
to supply a default count of zero. The increment operation then builds up the count for each letter.

The function int () which always returns zero is just a special case of constant functions. A faster and more flexible
way to create constant functions is to use a lambda function which can supply any constant value (not just zero):

>>> def constant_factory(value) :
. return lambda: value
>>> d = defaultdict (constant_factory('<missing>"))
>>> d.update (name="'John', action='ran')
>>> ! to "5 d
'John ran to <missing>'

Setting the default_factoryto set makes the defaultdict useful for building a dictionary of sets:

8.4. collections — Container datatypes 239

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.0

>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]
>>> defaultdict (set)
>>> for k, v in s:

d[k].add(v)

Q.
Il

>>> sorted(d.items ())
[("blue', {2, 4}), ('red', {1, 3})]

8.4.5 namedtuple () Factory Function for Tuples with Named Fields

Named tuples assign meaning to each position in a tuple and allow for more readable, self-documenting code. They
can be used wherever regular tuples are used, and they add the ability to access fields by name instead of position
index.

collections.namedtuple (typename, field_names, *, rename=False, defaults=None, module=None)

Returns a new tuple subclass named fypename. The new subclass is used to create tuple-like objects that have
fields accessible by attribute lookup as well as being indexable and iterable. Instances of the subclass also have
a helpful docstring (with typename and field_names) and a helpful __repr___ () method which lists the tuple
contents in a name=value format.

The field_names are a sequence of strings such as ['x', 'y']. Alternatively, field_names can be a single
string with each fieldname separated by whitespace and/or commas, for example 'x y'or 'x, y'.

Any valid Python identifier may be used for a fieldname except for names starting with an underscore. Valid
identifiers consist of letters, digits, and underscores but do not start with a digit or underscore and cannot be a
keyword such as class, for, return, global, pass, or raise.

If rename is true, invalid fieldnames are automatically replaced with positional names. For example, ['abc',
'def', 'ghi', 'abc']isconvertedto ['abc', '_1', 'ghi', '_3'], eliminating the keyword
def and the duplicate fieldname abc.

defaults can be None or an iterable of default values. Since fields with a default value must come after any
fields without a default, the defaults are applied to the rightmost parameters. For example, if the fieldnames
are ['x', 'y', 'z'] and the defaults are (1, 2),then x will be a required argument, y will default to
1, and z will default to 2.

If module is defined, the __module___ attribute of the named tuple is set to that value.

Named tuple instances do not have per-instance dictionaries, so they are lightweight and require no more
memory than regular tuples.

To support pickling, the named tuple class should be assigned to a variable that matches typename.
Changed in version 3.1: Added support for rename.

Changed in version 3.6: The verbose and rename parameters became keyword-only arguments.
Changed in version 3.6: Added the module parameter.

Changed in version 3.7: Removed the verbose parameter and the _source attribute.

Changed in version 3.7: Added the defaults parameter and the _field_ defaults attribute.

>>> # Basic example

>>> Point = namedtuple('Point', ['x', 'y'])

>>> p = Point (11, y=22) # instantiate with positional or keyword arguments
>>> p[0] + pl[l] # indexable like the plain tuple (11, 22)

33

>>> x, y =p # unpack like a regular tuple

>>> x, y

(11, 22)

>>> p.xXx + p.y # fields also accessible by name

33

(continues on next page)

240 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> p # readable __repr__ with a name=value style
Point (x=11, y=22)

Named tuples are especially useful for assigning field names to result tuples returned by the csv or sglite3
modules:

EmployeeRecord = namedtuple ('EmployeeRecord', 'name, age, title, department,.
—paygrade')

import csv
for emp in map (EmployeeRecord._make, csv.reader (open("employees.csv", "rb"))):
print (emp.name, emp.title)

import sqglite3
conn = sglite3.connect ('/companydata')
cursor = conn.cursor ()
cursor.execute ('SELECT name, age, title, department, paygrade FROM employees')
for emp in map (EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

In addition to the methods inherited from tuples, named tuples support three additional methods and two attributes.
To prevent conflicts with field names, the method and attribute names start with an underscore.

classmethod somenamedtuple._make (iferable)
Class method that makes a new instance from an existing sequence or iterable.

>>> t = [11, 22]
>>> Point._make (t)
Point (x=11, y=22)

somenamedtuple._asdict ()

Return a new dict which maps field names to their corresponding values:

>>> p = Point (x=11, y=22)
>>> p._asdict ()
{'x': 11, 'y': 22}

Changed in version 3.1: Returns an OrderedDict instead of a regular dict.

Changed in version 3.8: Returns a regular di ct instead of an OrderedDict. Asof Python 3.7, regular dicts

are guaranteed to be ordered. If the extra features of OrderedDi ct are required, the suggested remediation

is to cast the result to the desired type: OrderedDict (nt._asdict ()).
somenamedtuple._replace (**kwargs)

Return a new instance of the named tuple replacing specified fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)

>>> for partnum, record in inventory.items() :
ce inventory[partnum] = record._replace (price=newprices|[partnum], .
—timestamp=time.now())

somenamedtuple._£fields

Tuple of strings listing the field names. Useful for introspection and for creating new named tuple types from
existing named tuples.

>>> p._fields # view the field names
('x|, 'yl)

(continues on next page)

8.4. collections — Container datatypes 241

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> Color = namedtuple('Color', 'red green blue')

>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128, green=255, blue=0)

somenamedtuple._field_defaults

Dictionary mapping field names to default values.

>>> Account = namedtuple('Account', ['type', 'balance'], defaults=[0])
>>> Account._field_defaults

{'"balance': 0}

>>> Account ('premium')

Account (type="premium', balance=0)

To retrieve a field whose name is stored in a string, use the getattr () function:

>>> getattr(p, 'x'")
11

To convert a dictionary to a named tuple, use the double-star-operator (as described in tut-unpacking-arguments):

>>> d = {'x': 11, 'y': 22}
>>> Point (**d)
Point (x=11, y=22)

Since a named tuple is a regular Python class, it is easy to add or change functionality with a subclass. Here is how
to add a calculated field and a fixed-width print format:

>>> class Point (namedtuple ('Point', ['x', 'y'])):
~ slots = ()
@property
def hypot (self):

return (self.x ** 2 + self.y ** 2) ** 0.5
def _ str_ (self):
R return 'Point: x= y= hypot= ' % (self.x, self.y, self.
—hypot)
>>> for p in Point (3, 4), Point (14, 5/7):
Ce. print (p)
Point: x= 3.000 vy= 4.000 hypot= 5.000
Point: x=14.000 vy= 0.714 Thypot=14.018

The subclass shown above sets __slots__ to an empty tuple. This helps keep memory requirements low by
preventing the creation of instance dictionaries.

Subclassing is not useful for adding new, stored fields. Instead, simply create a new named tuple type from the
_ fields attribute:

>>> Point3D = namedtuple('Point3D', Point._fields + ('z',))

Docstrings can be customized by making direct assignments to the __doc___fields:

>>> Book = namedtuple('Book', ['id', 'title', 'authors'])

>>> Book. doc_ += ': Hardcover book in active collection'

>>> Book.id._ doc_ = '"13-digit ISBN'

>>> Book.title. doc__ = 'Title of first printing'

>>> Book.authors._ _doc__ = 'List of authors sorted by last name’

Changed in version 3.5: Property docstrings became writeable.

See also:

242 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

See t yping.NamedTuple for a way to add type hints for named tuples. It also provides an elegant notation
using the class keyword:

class Component (NamedTuple) :
part_number: int
weight: float
description: Optional[str] = None

See types.SimpleNamespace () for a mutable namespace based on an underlying dictionary instead of
a tuple.

The dataclasses module provides a decorator and functions for automatically adding generated special
methods to user-defined classes.

8.4.6 OrderedDict objects

Ordered dictionaries are just like regular dictionaries but have some extra capabilities relating to ordering operations.
They have become less important now that the built-in dict class gained the ability to remember insertion order
(this new behavior became guaranteed in Python 3.7).

Some differences from di ct still remain:

The regular dict was designed to be very good at mapping operations. Tracking insertion order was sec-
ondary.

The OrderedDict was designed to be good at reordering operations. Space efficiency, iteration speed, and
the performance of update operations were secondary.

The OrderedDict algorithm can handle frequent reordering operations better than dict. As shown in the
recipes below, this makes it suitable for implementing various kinds of LRU caches.

The equality operation for OrderedDict checks for matching order.

A regular dict can emulate the order sensitive equality test withp == g and all(kl == k2 for
k1, k2 in zip(p, 9)).

The popitem () method of OrderedDict has a different signature. It accepts an optional argument to
specify which item is popped.

A regular dict can emulate OrderedDict’s od.popitem (last=True) with d.popitem () which is
guaranteed to pop the rightmost (last) item.

A regular dict can emulate OrderedDict's od.popitem(last=False) with (k 1=
next (iter(d)), d.pop (k)) which will return and remove the leftmost (first) item if it exists.

OrderedDict has amove_to_end () method to efficiently reposition an element to an endpoint.

A regular dict can emulate OrderedDict’s od.move_to_end (k, last=True) withd[k] = d.
pop (k) which will move the key and its associated value to the rightmost (last) position.

A regular dict does not have an efficient equivalent for OrderedDict’s od.move_to_end (k,
last=False) which moves the key and its associated value to the leftmost (first) position.

Until Python 3.8, dict lackeda __reversed__ () method.

class collections.OrderedDict ([items])

Return an instance of a dict subclass that has methods specialized for rearranging dictionary order.
New in version 3.1.

popitem (last=True)

The popitem () method for ordered dictionaries returns and removes a (key, value) pair. The pairs are
returned in LIFO order if last is true or FIFO (first-in, first-out) order if false.

8.4. collections — Container datatypes 243

The Python Library Reference, Release 3.11.0

move_to_end (key, last=True)

Move an existing key to either end of an ordered dictionary. The item is moved to the right end if last is
true (the default) or to the beginning if /ast is false. Raises KeyError if the key does not exist:

>>> d = OrderedDict.fromkeys ('abcde')
>>> d.move_to_end('b")

>>> "' jJoin (d)

'acdeb'

>>> d.move_to_end('b', last=False)
>>> "' jJoin (d)

'bacde’

New in version 3.2.
In addition to the usual mapping methods, ordered dictionaries also support reverse iteration using reversed ().

Equality tests between OrderedDict objects are order-sensitive and are implemented as list (odl.
items ())==1list (od2.items ()). Equality tests between OrderedDict objects and other Mapping ob-
jects are order-insensitive like regular dictionaries. This allows OrderedDict objects to be substituted anywhere
a regular dictionary is used.

Changed in version 3.5: The items, keys, and values views of OrderedDict now support reverse iteration using
reversed().

Changed in version 3.6: With the acceptance of PEP 468, order is retained for keyword arguments passed to the
OrderedDict constructor and its update () method.

Changed in version 3.9: Added merge (|) and update (| =) operators, specified in PEP 584.
OrderedDict Examples and Recipes

It is straightforward to create an ordered dictionary variant that remembers the order the keys were last inserted. If
a new entry overwrites an existing entry, the original insertion position is changed and moved to the end:

class LastUpdatedOrderedDict (OrderedDict) :
'Store items in the order the keys were last added’

def _ setitem__ (self, key, value):
super () .__setitem__ (key, value)
self.move_to_end(key)

An OrderedDict would also be useful for implementing variants of functools.lru_cache():

from time import time

class TimeBoundedLRU:
"LRU Cache that invalidates and refreshes old entries."

def __init__ (self, func, maxsize=128, maxage=30):
self.cache = OrderedDict () # { args : (timestamp, result)}
self.func = func
self.maxsize = maxsize
self.maxage = maxage

def __call__(self, *args):
if args in self.cache:
self.cache.move_to_end(args)

timestamp, result = self.cachelargs]
if time () - timestamp <= self.maxage:
return result
result = self.func(*args)
self.cachelargs] = time(), result

(continues on next page)

244 Chapter 8. Data Types

https://peps.python.org/pep-0468/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.0

(continued from previous page)

if len(self.cache) > self.maxsize:
self.cache.popitem(0)
return result

class MultiHitLRUCache:
""" LRU cache that defers caching a result until
it has been requested multiple times.

To avoid flushing the LRU cache with one-time requests,
we don't cache until a request has been made more than once.

men

def __init__ (self, func, maxsize=128, maxrequests=4096, cache_after=1):
self.requests = OrderedDict () # { uncached_key : request_count }
self.cache = OrderedDict () # { cached_key : function_result }
self.func = func
self.maxrequests = maxrequests # max number of uncached requests
self.maxsize = maxsize # max number of stored return values

self.cache_after = cache_after

def _ call_(self, *args):
if args in self.cache:
self.cache.move_to_end(args)
return self.cachelargs]
result = self.func(*args)
self.requests[args] = self.requests.get(args, 0) + 1
if self.requests[args] <= self.cache_after:
self.requests.move_to_end(args)
if len(self.requests) > self.maxrequests:
self.requests.popitem(0)
else:
self.requests.pop(args, None)
self.cachel[args] = result
if len(self.cache) > self.maxsize:
self.cache.popitem(0)
return result

8.4.7 UserDict objects

The class, UserDict acts as a wrapper around dictionary objects. The need for this class has been partially sup-
planted by the ability to subclass directly from dict; however, this class can be easier to work with because the
underlying dictionary is accessible as an attribute.

class collections.UserDict ([initialdata])

Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via the data attribute of UserDi ct instances. If initialdata is provided, dat a is initialized with its contents;
note that a reference to initialdata will not be kept, allowing it to be used for other purposes.

In addition to supporting the methods and operations of mappings, UserDi ct instances provide the following
attribute:

data
A real dictionary used to store the contents of the UserDict class.

8.4. collections — Container datatypes 245

The Python Library Reference, Release 3.11.0

8.4.8 UserList objects

This class acts as a wrapper around list objects. It is a useful base class for your own list-like classes which can inherit
from them and override existing methods or add new ones. In this way, one can add new behaviors to lists.

The need for this class has been partially supplanted by the ability to subclass directly from 1 i st; however, this class
can be easier to work with because the underlying list is accessible as an attribute.
class collections.UserList ([list])

Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via the data
attribute of UserList instances. The instance’s contents are initially set to a copy of /ist, defaulting to the
empty list []. /ist can be any iterable, for example a real Python list or a UserLi st object.

In addition to supporting the methods and operations of mutable sequences, UserLi st instances provide the
following attribute:
data
A real 11 st object used to store the contents of the UserList class.
Subclassing requirements: Subclasses of UserList are expected to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of

the actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which
is a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class
will need to be overridden; please consult the sources for information about the methods which need to be provided
in that case.

8.4.9 UsersString objects

The class, UserSt ring acts as a wrapper around string objects. The need for this class has been partially supplanted
by the ability to subclass directly from st r; however, this class can be easier to work with because the underlying
string is accessible as an attribute.

class collections.UserString (seq)

Class that simulates a string object. The instance’s content is kept in a regular string object, which is accessible
via the data attribute of UserString instances. The instance’s contents are initially set to a copy of seq.
The seq argument can be any object which can be converted into a string using the built-in st r () function.

In addition to supporting the methods and operations of strings, UserSt ring instances provide the following
attribute:

data
A real st r object used to store the contents of the UserSt ring class.

Changed in version 3.5: New methods __getnewargs_ _,___rmod__,casefold, format_map, is-
printable, and maketrans.

8.5 collections.abc — Abstract Base Classes for Containers

New in version 3.3: Formerly, this module was part of the collections module.

Source code: Lib/_collections_abc.py

This module provides abstract base classes that can be used to test whether a class provides a particular interface; for
example, whether it is hashable or whether it is a mapping.

An issubclass () or isinstance () test for an interface works in one of three ways.

246 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.11/Lib/_collections_abc.py

The Python Library Reference, Release 3.11.0

1) A newly written class can inherit directly from one of the abstract base classes. The class must supply the required
abstract methods. The remaining mixin methods come from inheritance and can be overridden if desired. Other
methods may be added as needed:

Direct inheritance

Extra method not required by the ABC
Required abstract method

Required abstract method

Optionally override a mixin method

class C(Sequence) :
def _ init_ (self):
def _ getitem__ (self, index):
def _ len_ (self):
def count (self, wvalue):

R

>>> issubclass (C, Sequence)
True

>>> isinstance (C(), Sequence)
True

2) Existing classes and built-in classes can be registered as “virtual subclasses” of the ABCs. Those classes should
define the full API including all of the abstract methods and all of the mixin methods. This lets users rely on i.s—
subclass () or isinstance () tests to determine whether the full interface is supported. The exception to this
rule is for methods that are automatically inferred from the rest of the API:

class D: # No inheritance
def _ _init_ (self): # Extra method not required by the ABC
def _ _getitem__ (self, index): # Abstract method
def len_ (self): # Abstract method
def count (self, wvalue): # Mixin method
def index(self, wvalue): # Mixin method
Sequence.register (D) # Register instead of inherit

>>> issubclass (D, Sequence)
True

>>> isinstance (D (), Sequence)
True

In this example, class D does not need to define __contains__,___iter__,and __reversed__ because the
in-operator, the iteration logic, and the reversed () function automatically fall back to using __getitem__ and
len

3) Some simple interfaces are directly recognizable by the presence of the required methods (unless those methods
have been set to None):

class E:
def _ iter_ (self):
def _ next_ (next):

>>> issubclass (E, Iterable)
True

>>> isinstance(E(), Iterable)
True

Complex interfaces do not support this last technique because an interface is more than just the presence of method
names. Interfaces specify semantics and relationships between methods that cannot be inferred solely from the
presence of specific method names. For example, knowing that a class supplies __getitem__, __len_ , and
__iter__isinsufficient for distinguishing a Sequence from a Mapping.

New in version 3.9: These abstract classes now support []. See Generic Alias Type and PEP 585.

8.5. collections.abc — Abstract Base Classes for Containers 247

https://peps.python.org/pep-0585/

The Python Library Reference, Release 3.11.0

8.5.1 Collections Abstract Base Classes

The collections module offers the following ABCs:

248 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

ABC Inherits Abstract Methods Mixin Methods
from
Container! __contains__
Hashable 2301 __hash__
Iterablehe230.12 __iter_
Tterator’aee20.1 Iter— __next__ __iter_
able
Reversiblele 01 Iter— _ _reversed_
able
Generatortaee 0.1 Itera- send, throw close,___iter_ ,_ next_
tor
Si ZedPuge 250, 1 __len__
CallablePaee0.1 __call__
CollectionPaee?0.1 Sized, _ _contains__,
Iter— __diter_,_ len_
able,
Con—
tainer
Sequence Re— __getitem__, __contains_ ,__iter_
versible,| _ len_ _ _reversed_ , index, and count
Collec—
tion
MutableSequence Se— __getitem__, Inherited Sequence methods and
quence __setitem_ , append, reverse, extend, pop,
__delitem__, remove,and ___iadd___
__len__ ,insert
ByteString Se-— __getitem__, Inherited Sequence methods
quence __len__
Set Collec- __contains__, _le ,_ 1t , eq_,__ne__,
tion __diter_ ,_ len_ _gt__, ge__, and__,
_or__,_ sub_ , xor_ ,and
isdisjoint
MutableSet Set __contains__, Inherited Set methods and clear,
__iter_,_ len_ , pop, remove, ior_ ,_iand__,
add, discard __ixor_ ,and __isub_
Mapping Collec- __getitem__, __contains__, keys, items,
tion __iter_ ,_ len_ values,get,__eq ,and_ _ne_
MutableMapping Mapping | __getitem__, Inherited Mapping methods and pop,
__setitem_, popitem, clear, update, and
__delitem__, setdefault
__diter_,_ len_
MappingView Sized __len__
ItemsView Map— __contains_ ,_ _iter_
pingView,
Set
KeysView Map- __contains_ ,__iter_
pingView,
Set
ValuesView Map— __contains_ ,__iter_
pingView,
Collec—
tion
AwaitablePee 2301 __await_
Coroutinehe 0.1 Await-— send, throw close
able
AsyncIterablepﬁge250‘1 __aiter_
AsyncIteratortee 01 AsyncIt—-| __anext___ __aiter
erable

Page 250, 1

t
8%.55/&70 ections.abec —

AbStraGt Eéﬁeaél%lé%e%tfﬁ ‘Container

erator

aclose, aiter_ ,

s — e

The Python Library Reference, Release 3.11.0

8.5.2 Collections Abstract Base Classes — Detailed Descriptions

class collections.abc.Container
ABC for classes that provide the __contains__ () method.

class collections.abc.Hashable
ABC for classes that provide the __hash___ () method.

class collections.abc.Sized
ABC for classes that provide the __1en__ () method.

class collections.abc.Callable
ABC for classes that provide the __call__ () method.

class collections.abc.Iterable
ABC for classes that provide the __iter__ () method.
Checking isinstance (obj, Iterable) detects classes that are registered as Tterable or that have
an__iter__ () method, but it does not detect classes that iterate withthe _ _getitem__ () method. The
only reliable way to determine whether an object is iferable is to call iter (obj).

class collections.abc.Collection

ABC for sized iterable container classes.
New in version 3.6.

class collections.abc.Iterator
ABC for classes that provide the __iter () and__next__ () methods. See also the definition of iter-
ator.

class collections.abc.Reversible
ABC for iterable classes that also provide the __reversed__ () method.

New in version 3.6.

class collections.abc.Generator
ABC for generator classes that implement the protocol defined in PEP 342 that extends iterators with the
send (), throw () and close () methods. See also the definition of generator.

New in version 3.5.

class collections.abc.Sequence

class collections.abc.MutableSequence

class collections.abc.ByteString
ABC:s for read-only and mutable sequences.
Implementation note: Some of the mixin methods, such as __iter_ (), __reversed__ ()
and index (), make repeated calls to the underlying _ getitem__ () method. Consequently, if
__getitem__ () is implemented with constant access speed, the mixin methods will have linear perfor-

mance; however, if the underlying method is linear (as it would be with a linked list), the mixins will have
quadratic performance and will likely need to be overridden.

Changed in version 3.5: The index() method added support for stop and start arguments.

class collections.abc.Set
class collections.abc.MutableSet
ABC:s for read-only and mutable sets.

class collections.abc.Mapping

! These ABCs override object .__subclasshook__ () to support testing an interface by verifying the required methods are present
and have not been set to None. This only works for simple interfaces. More complex interfaces require registration or direct subclassing.

2 Checking isinstance (obj, Iterable) detects classes that are registered as Iterable or that have an __iter__ () method,
but it does not detect classes that iterate with the __getitem__ () method. The only reliable way to determine whether an object is iterable is
tocall iter (obj).

250 Chapter 8. Data Types

https://peps.python.org/pep-0342/

The Python Library Reference, Release 3.11.0

class collections.abc.MutableMapping

ABC:s for read-only and mutable mappings.

class collections.abc.MappingView
class collections.abc.ItemsView
class collections.abc.KeysView
class collections.abc.ValuesView

ABCs for mapping, items, keys, and values views.

class collections.abc.Awaitable

ABC for awaitable objects, which can be used in await expressions. Custom implementations must provide
the _ _await__ () method.

Coroutine objects and instances of the Corout ine ABC are all instances of this ABC.

Note: In CPython, generator-based coroutines (generators decorated with types.coroutine ()) are
awaitables, even though they do not have an __await__ () method. Using isinstance (gencoro,
Awaitable) for them will return False. Use inspect.isawaitable () to detect them.

New in version 3.5.

class collections.abc.Coroutine

ABC for coroutine compatible classes. These implement the following methods, defined in coroutine-objects:
send (), throw (), and close (). Custom implementations must also implement __await__ (). All
Coroutine instances are also instances of Awaitable. See also the definition of coroutine.

Note: In CPython, generator-based coroutines (generators decorated with types. coroutine ()) are
awaitables, even though they do not have an __await__ () method. Using isinstance (gencoro,
Coroutine) for them will return False. Use inspect.isawaitable () to detect them.

New in version 3.5.

class collections.abc.AsynclIterable
ABC for classes that provide __aiter__ method. See also the definition of asynchronous iterable.

New in version 3.5.

class collections.abc.AsyncIterator

ABC for classes that provide __aiter___and __anext__ methods. See also the definition of asynchronous
iterator.

New in version 3.5.

class collections.abc.AsyncGenerator

ABC for asynchronous generator classes that implement the protocol defined in PEP 525 and PEP 492.

New in version 3.6.

8.5.3 Examples and Recipes

ABC:s allow us to ask classes or instances if they provide particular functionality, for example:

size = None
if isinstance (myvar, collections.abc.Sized):
size = len (myvar)

8.5. collections.abc — Abstract Base Classes for Containers 251

https://peps.python.org/pep-0525/
https://peps.python.org/pep-0492/

The Python Library Reference, Release 3.11.0

Several of the ABCs are also useful as mixins that make it easier to develop classes supporting container APIs. For
example, to write a class supporting the full Set API, it is only necessary to supply the three underlying abstract
methods: __contains__ (),__iter_ (),and__len__ (). The ABC supplies the remaining methods such
as__and__ () and isdisjoint ():

class ListBasedSet (collections.abc.Set):

""" Alternate set implementation favoring space over speed

and not requiring the set elements to be hashable. '''
def _ init_ (self, iterable):

self.elements = 1lst = []

for value in iterable:

if value not in 1lst:
lst.append(value)

def _ iter_ (self):
return iter (self.elements)

def _ contains_ (self, wvalue):
return value in self.elements

def len_ (self):

return len(self.elements)

sl = ListBasedSet ('abcdef'")
s2 = ListBasedSet ('defghi'")
overlap = sl & s2 # The __and__ () method is supported automatically

Notes on using Set and MutableSet as a mixin:

(1) Since some set operations create new sets, the default mixin methods need a way to create new instances from
an iterable. The class constructor is assumed to have a signature in the form ClassName (iterable).
That assumption is factored-out to an internal classmethod called _from_iterable () which calls
cls (iterable) to produce a new set. If the Set mixin is being used in a class with a different con-
structor signature, you will need to override _from_iterable () with a classmethod or regular method
that can construct new instances from an iterable argument.

(2) To override the comparisons (presumably for speed, as the semantics are fixed), redefine __le__ () and
__ge__ (), then the other operations will automatically follow suit.

(3) The Set mixin provides a _hash () method to compute a hash value for the set; however, __hash__ () is
not defined because not all sets are hashable or immutable. To add set hashability using mixins, inherit from
both Set () and Hashable (), thendefine __hash__ = Set._hash.

See also:
* OrderedSet recipe for an example built on MutableSet.

¢ For more about ABCs, see the abc module and PEP 3119.

8.6 heapqg — Heap queue algorithm

Source code: Lib/heapq.py

This module provides an implementation of the heap queue algorithm, also known as the priority queue algorithm.

Heaps are binary trees for which every parent node has a value less than or equal to any of its children. This imple-
mentation uses arrays for which heap [k] <= heap[2*k+1] and heap[k] <= heap[2*k+2] for all k,
counting elements from zero. For the sake of comparison, non-existing elements are considered to be infinite. The
interesting property of a heap is that its smallest element is always the root, heap [0].

252 Chapter 8. Data Types

https://code.activestate.com/recipes/576694/
https://peps.python.org/pep-3119/
https://github.com/python/cpython/tree/3.11/Lib/heapq.py

The Python Library Reference, Release 3.11.0

The API below differs from textbook heap algorithms in two aspects: (a) We use zero-based indexing. This makes
the relationship between the index for a node and the indexes for its children slightly less obvious, but is more suitable
since Python uses zero-based indexing. (b) Our pop method returns the smallest item, not the largest (called a “min
heap” in textbooks; a “max heap” is more common in texts because of its suitability for in-place sorting).

These two make it possible to view the heap as a regular Python list without surprises: heap [0] is the smallest item,
and heap.sort () maintains the heap invariant!

To create a heap, use a list initialized to [], or you can transform a populated list into a heap via function
heapify ().

The following functions are provided:

heapqg.heappush (heap, item)

Push the value item onto the heap, maintaining the heap invariant.

heapqg.heappop (heap)
Pop and return the smallest item from the heap, maintaining the heap invariant. If the heap is empty, Tndex—
Error israised. To access the smallest item without popping it, use heap [0].

heapqg.heappushpop (heap, item)
Push item on the heap, then pop and return the smallest item from the heap. The combined action runs more
efficiently than heappush () followed by a separate call to heappop ().

heapg.heapify (x)

Transform list x into a heap, in-place, in linear time.

heapqg.heapreplace (heap, item)
Pop and return the smallest item from the heap, and also push the new item. The heap size doesn’t change. If
the heap is empty, TndexError is raised.

This one step operation is more efficient than a heappop () followed by heappush () and can be more
appropriate when using a fixed-size heap. The pop/push combination always returns an element from the heap
and replaces it with item.

The value returned may be larger than the item added. If that isn’t desired, consider using heappushpop ()
instead. Its push/pop combination returns the smaller of the two values, leaving the larger value on the heap.

The module also offers three general purpose functions based on heaps.

heapqg.merge (*iterables, key=None, reverse=False)
Merge multiple sorted inputs into a single sorted output (for example, merge timestamped entries from multiple
log files). Returns an iferator over the sorted values.

Similar to sorted (itertools.chain (*iterables)) butreturns an iterable, does not pull the data
into memory all at once, and assumes that each of the input streams is already sorted (smallest to largest).

Has two optional arguments which must be specified as keyword arguments.

key specifies a key function of one argument that is used to extract a comparison key from each input element.
The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the input elements are merged as if each comparison
were reversed. To achieve behavior similar to sorted (itertools.chain(*iterables), re-
verse=True), all iterables must be sorted from largest to smallest.

Changed in version 3.5: Added the optional key and reverse parameters.

heapqg.nlargest (n, iterable, key=None)

Return a list with the n largest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted (iterable, key=key, reverse=True) [:n].

8.6. heapg — Heap queue algorithm 253

The Python Library Reference, Release 3.11.0

heapg.nsmallest (n, iterable, key=None)

Return a list with the n smallest elements from the dataset defined by iterable. key, if provided, specifies a
function of one argument that is used to extract a comparison key from each element in iterable (for example,
key=str.lower). Equivalent to: sorted (iterable, key=key) [:n].

The latter two functions perform best for smaller values of n. For larger values, it is more efficient to use the
sorted () function. Also, when n==1, it is more efficient to use the built-in min () and max () functions. If
repeated usage of these functions is required, consider turning the iterable into an actual heap.

8.6.1 Basic Examples

A heapsort can be implemented by pushing all values onto a heap and then popping off the smallest values one at a
time:

>>> def heapsort (iterable):
h =[]
for value in iterable:
heappush (h, value)
return [heappop (h) for i in range(len (h))]

>>> heapsort ([1, 3, 5, 7, 9, 2, 4, 6, 8, 0])
[Ol 1/ 2/ 3! 4! 5/ 6/ 7! 8! 91

This is similar to sorted (iterable), butunlike sorted (), this implementation is not stable.

Heap elements can be tuples. This is useful for assigning comparison values (such as task priorities) alongside the
main record being tracked:

>>> h = []

>>> heappush (h,
>>> heappush (h,
>>> heappush (h
>>> heappush (h,
>>> heappop (h)
(1, 'write spec')

'write code'))
'release product'))
'write spec'))
'create tests'))

~

14

~

w = 3
~

~

8.6.2 Priority Queue Implementation Notes

A priority queue is common use for a heap, and it presents several implementation challenges:

* Sort stability: how do you get two tasks with equal priorities to be returned in the order they were originally
added?

¢ Tuple comparison breaks for (priority, task) pairs if the priorities are equal and the tasks do not have a default
comparison order.

* If the priority of a task changes, how do you move it to a new position in the heap?
* Or if a pending task needs to be deleted, how do you find it and remove it from the queue?

A solution to the first two challenges is to store entries as 3-element list including the priority, an entry count, and
the task. The entry count serves as a tie-breaker so that two tasks with the same priority are returned in the order
they were added. And since no two entry counts are the same, the tuple comparison will never attempt to directly
compare two tasks.

Another solution to the problem of non-comparable tasks is to create a wrapper class that ignores the task item and
only compares the priority field:

from dataclasses import dataclass, field
from typing import Any

(continues on next page)

254 Chapter 8. Data Types

https://en.wikipedia.org/wiki/Heapsort
https://en.wikipedia.org/wiki/Priority_queue

The Python Library Reference, Release 3.11.0

(continued from previous page)

@dataclass (order=True)
class PrioritizedItem:
priority: int
item: Any=field (compare=False)

The remaining challenges revolve around finding a pending task and making changes to its priority or removing it
entirely. Finding a task can be done with a dictionary pointing to an entry in the queue.

Removing the entry or changing its priority is more difficult because it would break the heap structure invariants. So,
a possible solution is to mark the entry as removed and add a new entry with the revised priority:

pg = [] # list of entries arranged in a heap
entry_finder = {} # mapping of tasks to entries
REMOVED = '<removed-task>" # placeholder for a removed task
counter = itertools.count () # unique sequence count

def add_task (task, priority=0):
'Add a new task or update the priority of an existing task'
if task in entry_finder:
remove_task (task)

count = next (counter)
entry = [priority, count, task]
entry_finder[task] = entry

heappush (pg, entry)

def remove_task (task):
'Mark an existing task as REMOVED. Raise KeyError if not found.'
entry = entry_finder.pop (task)
entry[-1] = REMOVED

def pop_task():
'Remove and return the lowest priority task. Raise KeyError if empty.'
while pqg:
priority, count, task = heappop (pqg)
if task is not REMOVED:
del entry_finder[task]
return task
raise KeyError ('pop from an empty priority queue')

8.6.3 Theory

Heaps are arrays for which a [k] <= a[2*k+1] anda[k] <= a[2*k+2] for all k, counting elements from 0.
For the sake of comparison, non-existing elements are considered to be infinite. The interesting property of a heap
is that a [0] is always its smallest element.

The strange invariant above is meant to be an efficient memory representation for a tournament. The numbers below
are k,nota[k]:

7 8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

In the tree above, each cell k is topping 2*k+1 and 2*k+2. In a usual binary tournament we see in sports, each
cell is the winner over the two cells it tops, and we can trace the winner down the tree to see all opponents s/he had.

8.6. heapg — Heap queue algorithm 255

The Python Library Reference, Release 3.11.0

However, in many computer applications of such tournaments, we do not need to trace the history of a winner. To
be more memory efficient, when a winner is promoted, we try to replace it by something else at a lower level, and the
rule becomes that a cell and the two cells it tops contain three different items, but the top cell “wins” over the two
topped cells.

If this heap invariant is protected at all time, index O is clearly the overall winner. The simplest algorithmic way to
remove it and find the “next” winner is to move some loser (let’s say cell 30 in the diagram above) into the O position,
and then percolate this new 0 down the tree, exchanging values, until the invariant is re-established. This is clearly
logarithmic on the total number of items in the tree. By iterating over all items, you get an O(n log n) sort.

A nice feature of this sort is that you can efficiently insert new items while the sort is going on, provided that the
inserted items are not “better” than the last 0’th element you extracted. This is especially useful in simulation contexts,
where the tree holds all incoming events, and the “win” condition means the smallest scheduled time. When an event
schedules other events for execution, they are scheduled into the future, so they can easily go into the heap. So, a
heap is a good structure for implementing schedulers (this is what I used for my MIDI sequencer :-).

Various structures for implementing schedulers have been extensively studied, and heaps are good for this, as they
are reasonably speedy, the speed is almost constant, and the worst case is not much different than the average case.
However, there are other representations which are more efficient overall, yet the worst cases might be terrible.

Heaps are also very useful in big disk sorts. You most probably all know that a big sort implies producing “runs” (which
are pre-sorted sequences, whose size is usually related to the amount of CPU memory), followed by a merging passes
for these runs, which merging is often very cleverly organised'. It is very important that the initial sort produces
the longest runs possible. Tournaments are a good way to achieve that. If, using all the memory available to hold a
tournament, you replace and percolate items that happen to fit the current run, you’ll produce runs which are twice
the size of the memory for random input, and much better for input fuzzily ordered.

Moreover, if you output the 0’th item on disk and get an input which may not fit in the current tournament (because
the value “wins” over the last output value), it cannot fit in the heap, so the size of the heap decreases. The freed
memory could be cleverly reused immediately for progressively building a second heap, which grows at exactly the
same rate the first heap is melting. When the first heap completely vanishes, you switch heaps and start a new run.
Clever and quite effective!

In a word, heaps are useful memory structures to know. I use them in a few applications, and I think it is good to
keep a ‘heap’ module around. :-)

8.7 bisect — Array bisection algorithm

Source code: Lib/bisect.py

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is called b i sect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (the boundary conditions are already right!).

The following functions are provided:

bisect .bisect_left (aq, x, lo=0, hi=len(a), *, key=None)

Locate the insertion point for x in a to maintain sorted order. The parameters lo and ki may be used to specify
a subset of the list which should be considered; by default the entire list is used. If x is already present in q,
the insertion point will be before (to the left of) any existing entries. The return value is suitable for use as the
first parameter to 1ist .insert () assuming that a is already sorted.

The returned insertion point i partitions the array a into two halves so that a1l (val < x for val in
al[lo : 1i]) fortheleftsideand all (val >= x for val in a[i : hi]) for the right side.

! The disk balancing algorithms which are current, nowadays, are more annoying than clever, and this is a consequence of the seeking capabil-
ities of the disks. On devices which cannot seek, like big tape drives, the story was quite different, and one had to be very clever to ensure (far in
advance) that each tape movement will be the most effective possible (that is, will best participate at “progressing” the merge). Some tapes were
even able to read backwards, and this was also used to avoid the rewinding time. Believe me, real good tape sorts were quite spectacular to watch!
From all times, sorting has always been a Great Art! :-)

256 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.11/Lib/bisect.py

The Python Library Reference, Release 3.11.0

key specifies a key function of one argument that is used to extract a comparison key from each element in the
array. To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly with no intervening function call.
Changed in version 3.10: Added the key parameter.

bisect.bisect_right (a, x, lo=0, hi=len(a), *, key=None)
bisect.bisect (a, x, lo=0, hi=len(a), *, key=None)

Similar to bisect_left (), but returns an insertion point which comes after (to the right of) any existing
entries of x in a.

The returned insertion point i partitions the array a into two halves so that a1l (val <= x for val in
allo : 1i]) fortheleftsideand all (val > x for val in a[i : hi]) for the right side.

key specifies a key function of one argument that is used to extract a comparison key from each element in the
array. To support searching complex records, the key function is not applied to the x value.

If key is None, the elements are compared directly with no intervening function call.
Changed in version 3.10: Added the key parameter.

bisect.insort_left (aq, x, lo=0, hi=len(a), *, key=None)

Insert x in a in sorted order.

This function first runs bisect_left () to locate an insertion point. Next, it runs the insert () method
on a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O (1og n) search is dominated by the slow O(n) insertion step.
Changed in version 3.10: Added the key parameter.

bisect.insort_right (a, x, lo=0, hi=len(a), *, key=None)
bisect.insort (a, x, lo=0, hi=len(a), *, key=None)

Similar to insort_left (), butinserting x in a after any existing entries of x.

This function first runs bisect_right () tolocate an insertion point. Next, it runs the insert () method
on a to insert x at the appropriate position to maintain sort order.

To support inserting records in a table, the key function (if any) is applied to x for the search step but not for
the insertion step.

Keep in mind that the O (1log n) search is dominated by the slow O(n) insertion step.

Changed in version 3.10: Added the key parameter.

8.7.1 Performance Notes

When writing time sensitive code using bisect() and insort(), keep these thoughts in mind:

* Bisection is effective for searching ranges of values. For locating specific values, dictionaries are more perfor-
mant.

 The insort() functions are O (n) because the logarithmic search step is dominated by the linear time insertion
step.

¢ The search functions are stateless and discard key function results after they are used. Consequently, if the
search functions are used in a loop, the key function may be called again and again on the same array elements. If
the key function isn’t fast, consider wrapping it with functools.cache () toavoid duplicate computations.
Alternatively, consider searching an array of precomputed keys to locate the insertion point (as shown in the
examples section below).

See also:

8.7. bisect — Array bisection algorithm 257

The Python Library Reference, Release 3.11.0

¢ Sorted Collections is a high performance module that uses bisect to managed sorted collections of data.

» The SortedCollection recipe uses bisect to build a full-featured collection class with straight-forward search
methods and support for a key-function. The keys are precomputed to save unnecessary calls to the key function
during searches.

8.7.2 Searching Sorted Lists

The above bisect () functions are useful for finding insertion points but can be tricky or awkward to use for
common searching tasks. The following five functions show how to transform them into the standard lookups for
sorted lists:

def index(a, x):
'Locate the leftmost value exactly equal to x'

i = bisect_left (a, x)
if 1 != len(a) and al[i] == x:
return i

raise ValueError

def find_1lt(a, x):
'Find rightmost value less than x'
i = bisect_left (a, x)
if i:
return al[i-1]
raise ValueError

def find_le(a, x):
'Find rightmost value less than or equal to x'
i = bisect_right(a, x)
if i:
return al[i-1]
raise ValueError

def find_gt(a, x):
'Find leftmost value greater than x'
i = bisect_right(a, x)
if 1 != len(a):
return a[i]
raise ValueError

def find_ge(a, x):
'Find leftmost item greater than or equal to x'
i = bisect_left (a, x)
if 1 !'= len(a):
return ali]
raise ValueError

8.7.3 Examples

The bisect () function can be useful for numeric table lookups. This example uses bisect () to look up a letter
grade for an exam score (say) based on a set of ordered numeric breakpoints: 90 and up is an ‘A’, 80 to 89 is a ‘B’,
and so on:

>>> def grade(score, breakpoints=[60, 70, 80, 90], grades='FDCBA'):
i = bisect (breakpoints, score)
return grades([i]

>>> [grade (score) for score in [33, 99, 77, 70, 89, 90, 100]]
['E‘l, VA', IC', lcl, lBl, IAII lAl]

258 Chapter 8. Data Types

http://www.grantjenks.com/docs/sortedcollections/
https://code.activestate.com/recipes/577197-sortedcollection/

The Python Library Reference, Release 3.11.0

The bisect () and insort () functions also work with lists of tuples. The key argument can serve to extract the
field used for ordering records in a table:

>>> from collections import namedtuple
>>> from operator import attrgetter
>>> from bisect import bisect, insort
>>> from pprint import pprint

>>> Movie = namedtuple('Movie', ('name', 'released', 'director'))

>>> movies = [
Movie ('Jaws', 1975, 'Speilberg'),
Movie ('Titanic', 1997, 'Cameron'),
Movie ('The Birds', 1963, 'Hitchcock'),
Movie ('Aliens', 1986, 'Scott'")

>>> # Find the first movie released after 1960

>>> by_vyear = attrgetter('released')

>>> movies.sort (key=by_year)

>>> movies[bisect (movies, 1960, key=by_year)]

Movie (name='The Birds', released=1963, director='Hitchcock"')

>>> # Insert a movie while maintaining sort order

>>> romance = Movie ('Love Story', 1970, 'Hiller'")

>>> insort (movies, romance, key=by_year)

>>> pprint (movies)

[Movie (name="'The Birds', released=1963, director='Hitchcock'),
Movie (name='Love Story', released=1970, director='Hiller'),
Movie (name='Jaws', released=1975, director='Speilberg'),
Movie (name='Aliens', released=1986, director='Scott'),

Movie (name='Titanic', released=1997, director='Cameron')]

If the key function is expensive, it is possible to avoid repeated function calls by searching a list of precomputed keys
to find the index of a record:

>>> data = [('red', 5), ('blue', 1), ('yellow', 8), ('black', 0)]
>>> data.sort (key=lambda r: r[1]) # Or use operator.itemgetter(1).
>>> keys = [r[l] for r in data] # Precompute a list of keys.
>>> datal[bisect_left (keys, 0)]

("black', 0)

>>> datal[bisect_left (keys, 1)]

("blue', 1)

>>> data([bisect_left (keys, 5)]

('red', 5)

>>> datal[bisect_left (keys, 8)]

('yellow', 8)

8.8 array — Efficient arrays of numeric values

This module defines an object type which can compactly represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using a type code, which is a single
character. The following type codes are defined:

8.8. array — Efficient arrays of numeric values 259

The Python Library Reference, Release 3.11.0

Type code | C Type Python Type Minimum size in bytes | Notes
'b! signed char int 1

'B' unsigned char int 1

u' wchar_t Unicode character | 2 (D)
'h' signed short int 2

'H' unsigned short int 2

'iv signed int int 2

' unsigned int int 2

'l signed long int 4

'n unsigned long int 4

'q' signed long long int 8

Q' unsigned long long | int 8

£ float float 4

'd’ double float 8

Notes:
(1) It can be 16 bits or 32 bits depending on the platform.

Changed in version 3.9: array ('u') now uses wchar_t as C type instead of deprecated Py_UNICODE.
This change doesn’t affect its behavior because Py_UNICODE is alias of wchar_t since Python 3.3.

Deprecated since version 3.3, will be removed in version 4.0.

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through the itemsize attribute.

The module defines the following type:

class array.array (typecode[, initializer])
A new array whose items are restricted by fypecode, and initialized from the optional initializer value, which
must be a list, a bytes-like object, or iterable over elements of the appropriate type.

If given a list or string, the initializer is passed to the new array’s fromlist (), frombytes (),or fro-
municode () method (see below) to add initial items to the array. Otherwise, the iterable initializer is passed
to the extend () method.

Raises an auditing event array.__new___ with arguments t ypecode, initializer.

array.typecodes

A string with all available type codes.
Array objects support the ordinary sequence operations of indexing, slicing, concatenation, and multiplication. When
using slice assignment, the assigned value must be an array object with the same type code; in all other cases, Type—

Errorisraised. Array objects also implement the buffer interface, and may be used wherever byfes-like objects are
supported.

The following data items and methods are also supported:
array.typecode

The typecode character used to create the array.
array.itemsize

The length in bytes of one array item in the internal representation.
array .append (x)

Append a new item with value x to the end of the array.

array.buffer_info ()

Return a tuple (address, length) giving the current memory address and the length in elements of the
buffer used to hold array’s contents. The size of the memory buffer in bytes can be computed as array.
buffer_info() [1] * array.itemsize. This is occasionally useful when working with low-level

260 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(and inherently unsafe) I/O interfaces that require memory addresses, such as certain ioct1 () operations.
The returned numbers are valid as long as the array exists and no length-changing operations are applied to it.

Note: When using array objects from code written in C or C++ (the only way to effectively make use of
this information), it makes more sense to use the buffer interface supported by array objects. This method is
maintained for backward compatibility and should be avoided in new code. The buffer interface is documented
in bufferobjects.

array.byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values, Runt imeError is raised. It is useful when reading data from a file written on a machine
with a different byte order.

array.count (x)

Return the number of occurrences of x in the array.

array .extend (iterable)
Append items from iferable to the end of the array. If iferable is another array, it must have exactly the same
type code; if not, TypeError will be raised. If iterable is not an array, it must be iterable and its elements
must be the right type to be appended to the array.

array.frombytes (s)
Appends items from the string, interpreting the string as an array of machine values (as if it had been read
from a file using the fromfile () method).

New in version 3.2: fromstring () is renamed to frombytes () for clarity.

array.fromfile (f, n)
Read n items (as machine values) from the file object f and append them to the end of the array. If less than n
items are available, EOFError is raised, but the items that were available are still inserted into the array.

array.fromlist (list)
Append items from the list. This is equivalent to for x in list: a.append (x) except thatif there
is a type error, the array is unchanged.

array.fromunicode (s)
Extends this array with data from the given unicode string. The array must be a type 'u' array; otherwise
a ValueError is raised. Use array.frombytes (unicodestring.encode (enc)) to append
Unicode data to an array of some other type.

array.index (x[, start[, stop]])

Return the smallest i such that i is the index of the first occurrence of x in the array. The optional arguments
start and stop can be specified to search for x within a subsection of the array. Raise ValueError if x is not
found.

Changed in version 3.10: Added optional start and stop parameters.

array.insert (i, x)
Insert a new item with value x in the array before position i. Negative values are treated as being relative to the
end of the array.

array.pop ([z])
Removes the item with the index i from the array and returns it. The optional argument defaults to -1, so that
by default the last item is removed and returned.

array.remove (x)

Remove the first occurrence of x from the array.

array.reverse ()

Reverse the order of the items in the array.

8.8. array — Efficient arrays of humeric values 261

The Python Library Reference, Release 3.11.0

array.tobytes ()
Convert the array to an array of machine values and return the bytes representation (the same sequence of bytes
that would be written to a file by the tofile () method.)
New in version 3.2: tostring () is renamed to tobytes () for clarity.

array.tofile (f)
Write all items (as machine values) to the file object f.

array.tolist ()
Convert the array to an ordinary list with the same items.

array.tounicode ()

Convert the array to a unicode string. The array must be a type 'u' array; otherwise a ValueError is
raised. Use array.tobytes () .decode (enc) to obtain a unicode string from an array of some other

type.

When an array object is printed or converted to a string, it is represented as array (typecode, initial-
izer). The initializer is omitted if the array is empty, otherwise it is a string if the typecode is 'u ', otherwise it is
a list of numbers. The string is guaranteed to be able to be converted back to an array with the same type and value
using eval (), solong as the array class has been imported using from array import array. Examples:

("1")

array ('u', 'hello \u2641")
array('l', [1, 2, 3, 4, 5])
array('d', [1.0, 2.0, 3.14])

array

See also:
Module struct Packing and unpacking of heterogeneous binary data.

Module xdrl1ib Packing and unpacking of External Data Representation (XDR) data as used in some remote
procedure call systems.

NumPy The NumPy package defines another array type.

8.9 weakref — Weak references

Source code: Lib/weakref.py

The weak ref module allows the Python programmer to create weak references to objects.
In the following, the term referent means the object which is referred to by a weak reference.

A weak reference to an object is not enough to keep the object alive: when the only remaining references to a
referent are weak references, garbage collection is free to destroy the referent and reuse its memory for something
else. However, until the object is actually destroyed the weak reference may return the object even if there are no
strong references to it.

A primary use for weak references is to implement caches or mappings holding large objects, where it’s desired that
a large object not be kept alive solely because it appears in a cache or mapping.

For example, if you have a number of large binary image objects, you may wish to associate a name with each. If
you used a Python dictionary to map names to images, or images to names, the image objects would remain alive just
because they appeared as values or keys in the dictionaries. The WeakKeyDictionary and WeakValueDic—
t ionary classes supplied by the weak re £ module are an alternative, using weak references to construct mappings
that don’t keep objects alive solely because they appear in the mapping objects. If, for example, an image object is
avalue in a WeakValueDictionary, then when the last remaining references to that image object are the weak
references held by weak mappings, garbage collection can reclaim the object, and its corresponding entries in weak
mappings are simply deleted.

262 Chapter 8. Data Types

https://numpy.org/
https://github.com/python/cpython/tree/3.11/Lib/weakref.py

The Python Library Reference, Release 3.11.0

WeakKeyDictionary and WeakValueDictionary use weak references in their implementation, setting up
callback functions on the weak references that notify the weak dictionaries when a key or value has been reclaimed
by garbage collection. WeakSet implements the set interface, but keeps weak references to its elements, just like
a WeakKeyDictionary does.

finalize provides a straight forward way to register a cleanup function to be called when an object is garbage
collected. This is simpler to use than setting up a callback function on a raw weak reference, since the module
automatically ensures that the finalizer remains alive until the object is collected.

Most programs should find that using one of these weak container types or finalize is all they need — it’s not
usually necessary to create your own weak references directly. The low-level machinery is exposed by the weakref
module for the benefit of advanced uses.

Not all objects can be weakly referenced. Objects which support weak references include class instances, functions
written in Python (but not in C), instance methods, sets, frozensets, some file objects, generators, type objects, sockets,
arrays, deques, regular expression pattern objects, and code objects.

Changed in version 3.2: Added support for thread.lock, threading.Lock, and code objects.

Several built-in types such as 1ist and dict do not directly support weak references but can add support through
subclassing:

class Dict (dict):
pass

obj = Dict (red=1, green=2, blue=3) # this object is weak referenceable

CPython implementation detail: Other built-in types such as tuple and int do not support weak references
even when subclassed.

Extension types can easily be made to support weak references; see weakref-support.

When ___slots__ are defined for a given type, weak reference support is disabled unless a '___weakref_ '
string is also present in the sequence of strings in the ___slots___ declaration. See __slots__ documentation for
details.

class weakref.ref (object[, callback])

Return a weak reference to object. The original object can be retrieved by calling the reference object if the
referent is still alive; if the referent is no longer alive, calling the reference object will cause None to be returned.
If callback is provided and not None, and the returned weakref object is still alive, the callback will be called
when the object is about to be finalized; the weak reference object will be passed as the only parameter to the
callback; the referent will no longer be available.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they
are handled in exactly the same way as exceptions raised from an object’s __del__ () method.

Weak references are hashable if the object is hashable. They will maintain their hash value even after the
object was deleted. If hash () is called the first time only after the object was deleted, the call will raise
TypeError.

Weak references support tests for equality, but not ordering. If the referents are still alive, two references have
the same equality relationship as their referents (regardless of the callback). If either referent has been deleted,
the references are equal only if the reference objects are the same object.

This is a subclassable type rather than a factory function.

__callback___

This read-only attribute returns the callback currently associated to the weakref. If there is no callback
or if the referent of the weakref is no longer alive then this attribute will have value None.

Changed in version 3.4: Added the __callback___ attribute.

8.9. weakref — Weak references 263

The Python Library Reference, Release 3.11.0

weakref .proxy (object[, callback])

Return a proxy to object which uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of either ProxyType or CallableProxyType, depending on whether object is callable. Proxy objects
are not hashable regardless of the referent; this avoids a number of problems related to their fundamentally
mutable nature, and prevent their use as dictionary keys. callback is the same as the parameter of the same
name to the ref () function.

Changed in version 3.8: Extended the operator support on proxy objects to include the matrix multiplication
operators @ and @=.

weakref .getweakrefcount (object)
Return the number of weak references and proxies which refer to object.

weakref.getweakrefs (object)
Return a list of all weak reference and proxy objects which refer to object.

class weakref.WeakKeyDictionary ([dict])

Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer
a strong reference to the key. This can be used to associate additional data with an object owned by other parts
of an application without adding attributes to those objects. This can be especially useful with objects that
override attribute accesses.

Changed in version 3.9: Added support for | and | = operators, specified in PEP 584.

WeakKeyDictionary objects have an additional method that exposes the internal references directly. The ref-
erences are not guaranteed to be “live” at the time they are used, so the result of calling the references needs to be
checked before being used. This can be used to avoid creating references that will cause the garbage collector to keep
the keys around longer than needed.

WeakKeyDictionary.keyrefs ()

Return an iterable of the weak references to the keys.

class weakref.WeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists any more.
Changed in version 3.9: Added support for | and | = operators, as specified in PEP 584.

WeakValueDictionary objects have an additional method that has the same issues as the keyrefs () method
of WeakKeyDictionary objects.
WeakValueDictionary.valuerefs ()

Return an iterable of the weak references to the values.

class weakref.WeakSet ([elements])

Set class that keeps weak references to its elements. An element will be discarded when no strong reference to
it exists any more.

class weakref.WeakMethod (method)

A custom re £ subclass which simulates a weak reference to a bound method (i.e., a method defined on a class
and looked up on an instance). Since a bound method is ephemeral, a standard weak reference cannot keep
hold of it. WeakMet hod has special code to recreate the bound method until either the object or the original
function dies:

>>> class C:
def method(self):
print ("method called!")

>>> ¢ = C()

>>> r = weakref.ref (c.method)
>>> 1 ()

(continues on next page)

264 Chapter 8. Data Types

https://peps.python.org/pep-0584/
https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> r = weakref.WeakMethod (c.method)

>>> r ()

<bound method C.method of <__main__.C object at 0x7£c859830220>>
>>> 1 () ()

method called!
>>> del c

>>> gc.collect ()
0

>>> r ()

>>>

New in version 3.4.

class weakref.finalize (obj, func, /, *args, **kwargs)

Return a callable finalizer object which will be called when obj is garbage collected. Unlike an ordinary weak
reference, a finalizer will always survive until the reference object is collected, greatly simplifying lifecycle
management.

A finalizer is considered alive until it is called (either explicitly or at garbage collection), and after that it is
dead. Calling a live finalizer returns the result of evaluating func (*arg, **kwargs), whereas calling a
dead finalizer returns None.

Exceptions raised by finalizer callbacks during garbage collection will be shown on the standard error output,
but cannot be propagated. They are handled in the same way as exceptions raised from an object’s__del__ ()
method or a weak reference’s callback.

When the program exits, each remaining live finalizer is called unless its atexit attribute has been set to
false. They are called in reverse order of creation.

A finalizer will never invoke its callback during the later part of the interpreter shutdown when module globals

are liable to have been replaced by None.

_call__ ()
If self is alive then mark it as dead and return the result of calling func (*args, **kwargs). If
self is dead then return None.

detach ()
If self is alive then mark it as dead and return the tuple (obj, func, args, kwargs). If self is
dead then return None.

peek ()
If self is alive then return the tuple (obj, func, args, kwargs). If self is dead then return
None.

alive

Property which is true if the finalizer is alive, false otherwise.

atexit

A writable boolean property which by default is true. When the program exits, it calls all remaining live
finalizers for which atexit is true. They are called in reverse order of creation.

Note: It is important to ensure that func, args and kwargs do not own any references to obj, either directly
or indirectly, since otherwise obj will never be garbage collected. In particular, func should not be a bound
method of obj.

New in version 3.4.

weakref .ReferenceType

The type object for weak references objects.

8.9. weakref — Weak references 265

The Python Library Reference, Release 3.11.0

weakref.ProxyType

The type object for proxies of objects which are not callable.

weakref.CallableProxyType
The type object for proxies of callable objects.

weakref.ProxyTypes

Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

See also:

PEP 205 - Weak References The proposal and rationale for this feature, including links to earlier implementations
and information about similar features in other languages.

8.9.1 Weak Reference Objects

Weak reference objects have no methods and no attributes besides ref.___callback__. A weak reference object
allows the referent to be obtained, if it still exists, by calling it:

>>> import weakref
>>> class Object:
pass

>>> o = Object ()
r

>>> = weakref.ref (0)
>>> 02 = r()

>>> o0 is 02

True

If the referent no longer exists, calling the reference object returns None:

>>> del o, o2
>>> print (r())
None

Testing that a weak reference object is still live should be done using the expression ref () is not None.
Normally, application code that needs to use a reference object should follow this pattern:

r is a weak reference object
o =r()
if o is None:
referent has been garbage collected
print ("Object has been deallocated; can't frobnicate.")
else:
print ("Object is still live!™")
o.do_something_useful ()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before the weak reference is called; the idiom shown above is safe in threaded
applications as well as single-threaded applications.

Specialized versions of ref objects can be created through subclassing. This is used in the implementation of the
WeakValueDictionary toreduce the memory overhead for each entry in the mapping. This may be most useful
to associate additional information with a reference, but could also be used to insert additional processing on calls to
retrieve the referent.

This example shows how a subclass of re £ can be used to store additional information about an object and affect the
value that’s returned when the referent is accessed:

266 Chapter 8. Data Types

https://peps.python.org/pep-0205/

The Python Library Reference, Release 3.11.0

import weakref

class ExtendedRef (weakref.ref):

def _ init_ (self, ob, callback=None, /, **annotations):
super () .__init__ (ob, callback)
self.__ _counter = 0

for k, v in annotations.items() :
setattr(self, k, wv)

def = call (self):
"""Return a palr containing the referent and the number of
times the reference has been called.

mrin

ob = super().__call__ ()

if ob is not None:
self.__counter += 1
ob = (ob, self.__counter)

return ob

8.9.2 Example

This simple example shows how an application can use object IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects
can still be retrieved by ID if they do.

import weakref
_id2obj_dict = weakref.WeakValueDictionary ()

def remember (obj) :
oid = id(obj)
_i1d2obj_dict[oid] = obj
return oid

def id2obj (oid) :
return _id2obj_dict[oid]

8.9.3 Finalizer Objects

The main benefit of using £inalize is that it makes it simple to register a callback without needing to preserve the
returned finalizer object. For instance

>>> import weakref
>>> class Object:
pass

>>> kenny = Object ()

>>> weakref.finalize (kenny, print, "You killed Kenny!")
<finalize object at ...; for 'Object' at ...>

>>> del kenny

You killed Kenny!

The finalizer can be called directly as well. However the finalizer will invoke the callback at most once.

>>> def callback(x, y, z):
print ("CALLBACK")
return x + y + z

(continues on next page)

8.9. weakref — Weak references 267

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> obj = Object ()
>>> f = weakref.finalize(obj, callback, 1, 2, z=3)
>>> assert f.alive

>>> assert f() == 6

CALLBACK

>>> assert not f.alive

>>> f () # callback not called because finalizer dead
>>> del obj # callback not called because finalizer dead

You can unregister a finalizer using its detach () method. This kills the finalizer and returns the arguments passed
to the constructor when it was created.

>>> obj = Object ()

>>> f = weakref.finalize(obj, callback, 1, 2, z=3)

>>> f.detach ()

(<...0Object object ...>, <function callback ...>, (1, 2), {'z': 3})
>>> newobj, func, args, kwargs = _

>>> assert not f.alive

>>> assert newob]j is obj

>>> assert func(*args, **kwargs) == 6

CALLBACK

Unless you set the atexit attribute to False, a finalizer will be called when the program exits if it is still alive.
For instance

>>> obj = Object ()

>>> weakref.finalize (obj, print, "obj dead or exiting")
<finalize object at ...; for 'Object' at ...>

>>> exit ()

obj dead or exiting

8.9.4 Comparing finalizers with __del__ () methods
Suppose we want to create a class whose instances represent temporary directories. The directories should be deleted
with their contents when the first of the following events occurs:

* the object is garbage collected,

¢ the object’s remove () method is called, or

* the program exits.

We might try to implement the class usinga __del__ () method as follows:

class TempDir:
def _ init_ (self):
self.name = tempfile.mkdtemp ()

def remove (self):
if self.name is not None:
shutil.rmtree (self.name)
self.name = None

@property
def removed(self):
return self.name is None

def _ del_ (self):
self.remove ()

268 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

Starting with Python 3.4, __del__ () methods no longer prevent reference cycles from being garbage collected,
and module globals are no longer forced to None during interpreter shutdown. So this code should work without any
issues on CPython.

However, handling of __del__ () methods is notoriously implementation specific, since it depends on internal
details of the interpreter’s garbage collector implementation.

A more robust alternative can be to define a finalizer which only references the specific functions and objects that it
needs, rather than having access to the full state of the object:

class TempDir:
def _ init_ (self):
self.name = tempfile.mkdtemp ()
self._finalizer = weakref.finalize(self, shutil.rmtree, self.name)

def remove (self):
self. finalizer ()

@property
def removed(self):
return not self._finalizer.alive

Defined like this, our finalizer only receives a reference to the details it needs to clean up the directory appropriately.
If the object never gets garbage collected the finalizer will still be called at exit.

The other advantage of weakref based finalizers is that they can be used to register finalizers for classes where the
definition is controlled by a third party, such as running code when a module is unloaded:

import weakref, sys
def unloading_module () :

implicit reference to the module globals from the function body
weakref.finalize (sys.modules[_ name], unloading_module)

Note: If you create a finalizer object in a daemonic thread just as the program exits then there is the possibility
that the finalizer does not get called at exit. However, in a daemonic thread atexit.register (), try:
finally: ... andwith: ... donotguarantee thatcleanup occurs either.

8.10 types — Dynamic type creation and names for built-in types

Source code: Lib/types.py

This module defines utility functions to assist in dynamic creation of new types.

It also defines names for some object types that are used by the standard Python interpreter, but not exposed as builtins
like int or str are.

Finally, it provides some additional type-related utility classes and functions that are not fundamental enough to be
builtins.

8.10. types — Dynamic type creation and names for built-in types 269

https://github.com/python/cpython/tree/3.11/Lib/types.py

The Python Library Reference, Release 3.11.0

8.10.1 Dynamic Type Creation

types.new_class (name, bases=(), kwds=None, exec_body=None)

Creates a class object dynamically using the appropriate metaclass.

The first three arguments are the components that make up a class definition header: the class name, the base
classes (in order), the keyword arguments (such as metaclass).

The exec_body argument is a callback that is used to populate the freshly created class namespace. It should
accept the class namespace as its sole argument and update the namespace directly with the class contents. If
no callback is provided, it has the same effect as passing in lambda ns: None.

New in version 3.3.

types.prepare_class (name, bases=(), kwds=None)

Calculates the appropriate metaclass and creates the class namespace.

The arguments are the components that make up a class definition header: the class name, the base classes (in
order) and the keyword arguments (such as metaclass).

The return value is a 3-tuple: metaclass, namespace, kwds

metaclass is the appropriate metaclass, namespace is the prepared class namespace and kwds is an updated copy
of the passed in kwds argument with any 'metaclass"' entry removed. If no kwds argument is passed in,
this will be an empty dict.

New in version 3.3.

Changed in version 3.6: The default value for the name space element of the returned tuple has changed. Now
an insertion-order-preserving mapping is used when the metaclass does not have a __prepare__ method.

See also:
metaclasses Full details of the class creation process supported by these functions
PEP 3115 - Metaclasses in Python 3000 Introduced the __prepare__ namespace hook

types.resolve_bases (bases)
Resolve MRO entries dynamically as specified by PEP 560.

This function looks for items in bases that are not instances of t ype, and returns a tuple where each such
object that has an __mro_entries__ method is replaced with an unpacked result of calling this method.
If a bases item is an instance of ¢ ype, or it doesn’t have an __mro_entries__ method, then it is included
in the return tuple unchanged.

New in version 3.7.
See also:

PEP 560 - Core support for typing module and generic types

8.10.2 Standard Interpreter Types

This module provides names for many of the types that are required to implement a Python interpreter. It deliberately
avoids including some of the types that arise only incidentally during processing such as the 1istiterator type.
Typical use of these names is for isinstance () or issubclass () checks.

If you instantiate any of these types, note that signatures may vary between Python versions.

Standard names are defined for the following types:

types.NoneType
The type of None.

New in version 3.10.

types.FunctionType

270 Chapter 8. Data Types

https://peps.python.org/pep-3115/
https://peps.python.org/pep-0560/
https://peps.python.org/pep-0560/

The Python Library Reference, Release 3.11.0

types.LambdaType

The type of user-defined functions and functions created by 1ambda expressions.
Raises an auditing event function.__new__ with argument code.
The audit event only occurs for direct instantiation of function objects, and is not raised for normal compilation.

types.GeneratorType
The type of generator-iterator objects, created by generator functions.

types.CoroutineType
The type of coroutine objects, created by async def functions.

New in version 3.5.

types.AsyncGeneratorType

The type of asynchronous generator-iterator objects, created by asynchronous generator functions.
New in version 3.6.

class types.CodeType (**kwargs)
The type for code objects such as returned by compile ().

Raises an auditing event code.__new___ with arguments code, filename, name, argcount,
posonlyargcount, kwonlyargcount,nlocals, stacksize, flags.

Note that the audited arguments may not match the names or positions required by the initializer. The audit
event only occurs for direct instantiation of code objects, and is not raised for normal compilation.

replace (**kwargs)

Return a copy of the code object with new values for the specified fields.
New in version 3.8.

types.CellType
The type for cell objects: such objects are used as containers for a function’s free variables.
New in version 3.8.

types.MethodType

The type of methods of user-defined class instances.

types.BuiltinFunctionType

types.BuiltinMethodType
The type of built-in functions like Ien () or sys.exit (), and methods of built-in classes. (Here, the term
“built-in” means “written in C”.)

types.WrapperDescriptorType
The type of methods of some built-in data types and base classes such as object.__init__ () or
object.__1t_ ().

New in version 3.7.

types.MethodWrapperType

The type of bound methods of some built-in data types and base classes. For example it is the type of
object () .__str__.

New in version 3.7.

types.NotImplementedType
The type of Not Implemented.

New in version 3.10.

8.10. types — Dynamic type creation and names for built-in types 271

The Python Library Reference, Release 3.11.0

types.MethodDescriptorType
The type of methods of some built-in data types such as str. join ().

New in version 3.7.

types.ClassMethodDescriptorType

The type of unbound class methods of some built-in data types suchas dict .__dict__ ['fromkeys'].
New in version 3.7.

class types.ModuleType (name, doc=None)

The type of modules. The constructor takes the name of the module to be created and optionally its docstring.

Note: Use importlib.util.module_from_spec () to create a new module if you wish to set the
various import-controlled attributes.

doc

The docstring of the module. Defaults to None.

__loader___
The loader which loaded the module. Defaults to None.

This attribute is to match importlib.machinery.ModuleSpec.loader as stored in the
__spec__ object.

Note: A future version of Python may stop setting this attribute by default. To guard against this
potential change, preferably read from the ___spec___ attribute instead or use getattr (module,
"__loader__", None) if you explicitly need to use this attribute.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.

name

The name of the module. Expected to match importlib.machinery.ModuleSpec.name.

package___
Which package a module belongs to. If the module is top-level (i.e. not a part of any specific package)
then the attribute should be set to ' ', else it should be set to the name of the package (which can be

__name___if the module is a package itself). Defaults to None.

This attribute is to match importlib.machinery.ModuleSpec.parent as stored in the
__spec___ object.

Note: A future version of Python may stop setting this attribute by default. To guard against this
potential change, preferably read from the ___spec___ attribute instead or use getattr (module,
"__package__", None) if you explicitly need to use this attribute.

Changed in version 3.4: Defaults to None. Previously the attribute was optional.
—_spec__

A record of the module’s import-system-related state. Expected to be an instance of importlib.
machinery.ModuleSpec.

New in version 3.4.

types.EllipsisType
The type of E11ipsis.

New in version 3.10.

272 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

class types.GenericAlias (¢ _origin,t_args)
The type of parameterized generics such as 1ist [int].

t_origin should be a non-parameterized generic class, such as 1ist, tuple or dict. t_args should
be a tuple (possibly of length 1) of types which parameterize t _origin:

>>> from types import GenericAlias

>>> list[int] == GenericAlias(list, (int,))

True

>>> dict[str, int] == GenericAlias(dict, (str, int))
True

New in version 3.9.
Changed in version 3.9.2: This type can now be subclassed.

class types.UnionType
The type of union type expressions.

New in version 3.10.

class types.TracebackType (tb_next, th_frame, tb_lasti, tb_lineno)
The type of traceback objects such as found in sys.exc_info () [2].
See the language reference for details of the available attributes and operations, and guidance on creating
tracebacks dynamically.
types.FrameType
The type of frame objects such as found in tb.tb_frame if tb is a traceback object.

See the language reference for details of the available attributes and operations.

types.GetSetDescriptorType
The type of objects defined in extension modules with PyGet SetDef, such as FrameType.f_locals
orarray.array.typecode. This type is used as descriptor for object attributes; it has the same purpose
as the property type, but for classes defined in extension modules.
types.MemberDescriptorType

The type of objects defined in extension modules with PyMemberDef, such as datetime.timedelta.
days. This type is used as descriptor for simple C data members which use standard conversion functions; it
has the same purpose as the property type, but for classes defined in extension modules.

CPython implementation detail: In other implementations of Python, this type may be identical to Get -
SetDescriptorType.

class types.MappingProxyType (mapping)
Read-only proxy of a mapping. It provides a dynamic view on the mapping’s entries, which means that when
the mapping changes, the view reflects these changes.

New in version 3.3.

Changed in version 3.9: Updated to support the new union (|) operator from PEP 584, which simply delegates
to the underlying mapping.
key in proxy

Return True if the underlying mapping has a key key, else False.

proxy [key]
Return the item of the underlying mapping with key key. Raises a KeyError if key is not in the
underlying mapping.

iter (proxy)
Return an iterator over the keys of the underlying mapping. This is a shortcut for iter (proxy.
keys()).

8.10. types — Dynamic type creation and names for built-in types 273

https://peps.python.org/pep-0584/

The Python Library Reference, Release 3.11.0

len (proxy)

Return the number of items in the underlying mapping.

copy ()
Return a shallow copy of the underlying mapping.

get (key[, default])
Return the value for key if key is in the underlying mapping, else default. If default is not given, it defaults
to None, so that this method never raises a KeyError.

items ()

Return a new view of the underlying mapping’s items ((key, value) pairs).

keys ()
Return a new view of the underlying mapping’s keys.

values ()

Return a new view of the underlying mapping’s values.

reversed (proxy)
Return a reverse iterator over the keys of the underlying mapping.

New in version 3.9.

8.10.3 Additional Utility Classes and Functions

class types.SimpleNamespace
A simple ob ject subclass that provides attribute access to its namespace, as well as a meaningful repr.

Unlike ob ject, with SimpleNamespace you can add and remove attributes. If a SimpleNamespace
object is initialized with keyword arguments, those are directly added to the underlying namespace.

The type is roughly equivalent to the following code:

class SimpleNamespace:
def __init__ (self, /, **kwargs):
self. dict_ .update(kwargs)

def _ _repr_ (self):
items = (f"{k/}={v " for k, v in self. dict__ .items{())
return " ()" . format (type(self) . name__, ", ".join(items))

def _ _eqg (self, other):
if isinstance(self, SimpleNamespace) and isinstance (other, .
—SimpleNamespace) :
return self. dict == other._ dict
return NotImplemented

SimpleNamespace may be useful as a replacement for class NS: pass. However, for a structured
record type use namedtuple () instead.

New in version 3.3.
Changed in version 3.9: Attribute order in the repr changed from alphabetical to insertion (like dict).

types.DynamicClassAttribute (fger=None, fset=None, fdel=None, doc=None)
Route attribute access on a class to __getattr__.
This is a descriptor, used to define attributes that act differently when accessed through an instance and through

a class. Instance access remains normal, but access to an attribute through a class will be routed to the class’s
__getattr__ method; this is done by raising AttributeError.

274 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

This allows one to have properties active on an instance, and have virtual attributes on the class with the same
name (see enum. Enum for an example).

New in version 3.4.

8.10.4 Coroutine Utility Functions

types.coroutine (gen_func)

This function transforms a generator function into a coroutine function which returns a generator-based corou-
tine. The generator-based coroutine is still a generator iterator, but is also considered to be a coroutine object
and is awaitable. However, it may not necessarily implement the __await__ () method.

If gen_func is a generator function, it will be modified in-place.

If gen_func is not a generator function, it will be wrapped. If it returns an instance of collections.abc.
Generator, the instance will be wrapped in an awaitable proxy object. All other types of objects will be
returned as is.

New in version 3.5.

8.11 copy — Shallow and deep copy operations

Source code: Lib/copy.py

Assignment statements in Python do not copy objects, they create bindings between a target and an object. For
collections that are mutable or contain mutable items, a copy is sometimes needed so one can change one copy
without changing the other. This module provides generic shallow and deep copy operations (explained below).

Interface summary:

Ccopy . copy (x)
Return a shallow copy of x.

copy . deepcopy (x[, memo])

Return a deep copy of x.

exception copy.Error

Raised for module specific errors.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

* A shallow copy constructs a new compound object and then (to the extent possible) inserts references into it to
the objects found in the original.

* A deep copy constructs a new compound object and then, recursively, inserts copies into it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

» Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause
a recursive loop.

» Because deep copy copies everything it may copy too much, such as data which is intended to be shared between
copies.

The deepcopy () function avoids these problems by:
* keeping a memo dictionary of objects already copied during the current copying pass; and

* letting user-defined classes override the copying operation or the set of components copied.

8.11. copy — Shallow and deep copy operations 275

https://github.com/python/cpython/tree/3.11/Lib/copy.py

The Python Library Reference, Release 3.11.0

This module does not copy types like module, method, stack trace, stack frame, file, socket, window, or any similar
types. It does “copy” functions and classes (shallow and deeply), by returning the original object unchanged; this is
compatible with the way these are treated by the pickle module.

Shallow copies of dictionaries can be made using dict . copy (), and of lists by assigning a slice of the entire list,
for example, copied_list = original_list[:].

Classes can use the same interfaces to control copying that they use to control pickling. See the description of module
pickle for information on these methods. In fact, the copy module uses the registered pickle functions from the
copyreg module.

In order for a class to define its own copy implementation, it can define special methods ___copy__ () and__deep-
copy___ (). The former is called to implement the shallow copy operation; no additional arguments are passed.
The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If the
__deepcopy___ () implementation needs to make a deep copy of a component, it should call the deepcopy ()
function with the component as first argument and the memo dictionary as second argument. The memo dictionary
should be treated as an opaque object.

See also:

Module pickle Discussion of the special methods used to support object state retrieval and restoration.

8.12 pprint — Data pretty printer

Source code: Lib/pprint.py

The pprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets or classes are included,
as well as many other objects which are not representable as Python literals.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they
don’t fit within the allowed width. Construct PrettyPrinter objects explicitly if you need to adjust the width
constraint.

Dictionaries are sorted by key before the display is computed.

Changed in version 3.9: Added support for pretty-printing t ypes. SimpleNamespace.
Changed in version 3.10: Added support for pretty-printing dataclasses.dataclass.
The pprint module defines one class:

class pprint.PrettyPrinter (indent=1, width=80, depth=None, stream=None, *, compact=False,
sort_dicts=True, underscore_numbers=False)
Construct a PrettyPrinter instance. This constructor understands several keyword parameters.

stream (default sy s . stdout) is a file-like object to which the output will be written by calling its write ()
method. If both stream and sys . stdout are None, then pprint () silently returns.

Other values configure the manner in which nesting of complex data structures is displayed.
indent (default 1) specifies the amount of indentation added for each nesting level.

depth controls the number of nesting levels which may be printed; if the data structure being printed is too
deep, the next contained level is replaced by By default, there is no constraint on the depth of the objects
being formatted.

width (default 80) specifies the desired maximum number of characters per line in the output. If a structure
cannot be formatted within the width constraint, a best effort will be made.

compact impacts the way that long sequences (lists, tuples, sets, etc) are formatted. If compact is false (the
default) then each item of a sequence will be formatted on a separate line. If compact is true, as many items
as will fit within the width will be formatted on each output line.

276 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.11/Lib/pprint.py

The Python Library Reference, Release 3.11.0

If sort_dicts is true (the default), dictionaries will be formatted with their keys sorted, otherwise they will display
in insertion order.

If underscore_numbers is true, integers will be formatted with the _ character for a thousands separator, oth-
erwise underscores are not displayed (the default).

Changed in version 3.4: Added the compact parameter.
Changed in version 3.8: Added the sort_dicts parameter.
Changed in version 3.10: Added the underscore_numbers parameter.

Changed in version 3.11: No longer attempts to write to sys . stdout if it is None.

>>> import pprint
>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff[:])
>>> pp = pprint.PrettyPrinter (indent=4)
>>> pp.pprint (stuff)
[["spam', 'eggs', 'lumberjack', 'knights', 'ni'],
'spam',
'eggs',
'lumberjack’',
'knights',
'ni']
>>> pp = pprint.PrettyPrinter (width=41, compact=True)
>>> pp.pprint (stuff)
[["spam', 'eggs', 'lumberjack',
'knights', 'ni'],
'spam', 'eggs', 'lumberjack', 'knights',
'ni']
>>> tup = ('spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead',
('"parrot', ('fresh fruit',))))))))
>>> pp = pprint.PrettyPrinter (depth=6)
>>> pp.pprint (tup)
("spam', ('eggs', ('lumberjack', ('knights', ('ni', ('dead', (...)))))))

pprint .pformat (object, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)
Return the formatted representation of object as a string. indent, width, depth, compact, sort_dicts and under-

score_numbers are passed to the Prett yPrinter constructor as formatting parameters and their meanings
are as described in its documentation above.

pprint .pp (object, *args, sort_dicts=False, **kwargs)

Prints the formatted representation of object followed by a newline. If sort_dicts is false (the default), dic-
tionaries will be displayed with their keys in insertion order, otherwise the dict keys will be sorted. args and
kwargs will be passed to pprint () as formatting parameters.

New in version 3.8.
pprint .pprint (object, stream=None, indent=1, width=80, depth=None, *, compact=False, sort_dicts=True,
underscore_numbers=False)

Prints the formatted representation of object on stream, followed by a newline. If stream is None, sys.
stdout is used. This may be used in the interactive interpreter instead of the print () function for in-
specting values (you can even reassign print = pprint.pprint for use within a scope).

The configuration parameters stream, indent, width, depth, compact, sort_dicts and underscore_numbers are
passed to the PrettyPrinter constructor and their meanings are as described in its documentation above.

>>> import pprint

>>> stuff = ['spam', 'eggs', 'lumberjack', 'knights', 'ni']
>>> stuff.insert (0, stuff)

>>> pprint.pprint (stuff)

[<Recursion on list with id=...>,

(continues on next page)

8.12. pprint — Data pretty printer 277

The Python Library Reference, Release 3.11.0

(continued from previous page)

'spam',
'eggs',
'lumberjack’',
'knights',
'ni']

pprint.isreadable (object)

Determine if the formatted representation of object is “readable”, or can be used to reconstruct the value using
eval (). This always returns False for recursive objects.

>>> pprint.isreadable (stuff)
False

pprint.isrecursive (object)

Determine if object requires a recursive representation.
One more support function is also defined:

pprint .saferepr (object)

Return a string representation of object, protected against recursive data structures. If the representation of
object exposes a recursive entry, the recursive reference will be represented as <Recursion on typename
with id=number>. The representation is not otherwise formatted.

>>> pprint.saferepr (stuff)
"[<Recursion on list with id=...>, 'spam', 'eggs', 'lumberjack', 'knights', 'ni

(ﬂl}ll

8.12.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

PrettyPrinter.pformat (object)
Return the formatted representation of object. This takes into account the options passed to the Pret —
tyPrinter constructor.
PrettyPrinter.pprint (object)
Print the formatted representation of object on the configured stream, followed by a newline.
The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since new Prett yPrinter objects don’t need to be created.
PrettyPrinter.isreadable (object)

Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value
using eval (). Note that this returns False for recursive objects. If the depth parameter of the Pret —
tyPrinter is set and the object is deeper than allowed, this returns False.

PrettyPrinter.isrecursive (object)

Determine if the object requires a recursive representation.

This method is provided as a hook to allow subclasses to modify the way objects are converted to strings. The default
implementation uses the internals of the saferepr () implementation.

PrettyPrinter.format (object, context, maxlevels, level)

Returns three values: the formatted version of object as a string, a flag indicating whether the result is readable,
and a flag indicating whether recursion was detected. The first argument is the object to be presented. The
second is a dictionary which contains the id () of objects that are part of the current presentation context
(direct and indirect containers for object that are affecting the presentation) as the keys; if an object needs to
be presented which is already represented in context, the third return value should be True. Recursive calls
to the format () method should add additional entries for containers to this dictionary. The third argument,

278 Chapter 8. Data Types

The Python Library

Reference, Release 3.11.0

maxlevels, gives the requested limit to recursion; this will be 0 if there is no

requested limit. This argument

should be passed unmodified to recursive calls. The fourth argument, level, gives the current level; recursive

calls should be passed a value less than that of the current call.

8.12.2 Example

To demonstrate several uses of the pprint () function and its parameters, let’s fetch information about a project

from PyPI:

>>> import json
>>> import pprint
>>> from urllib.request import urlopen

>>> with urlopen('https://pypi.org/pypi/sampleproject/json') as resp:
project_info = json.load(resp) ['info']
In its basic form, pprint () shows the whole object:
>>> pprint.pprint (project_info)
{'author': 'The Python Packaging Authority',
'author_email': 'pypa-dev@googlegroups.com',
'bugtrack_url': None,
'classifiers': ['Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'License :: OSI Approved :: MIT License',
'Programming Language :: Python :: 2°',
'Programming Language :: Python :: 2.6',
'Programming Language :: Python :: 2.7',
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.2"',
'Programming Language :: Python :: 3.3',
'Programming Language :: Python :: 3.4"',
'Topic :: Software Development :: Build Tools'],
'description': 'A sample Python project\n'
o \n |l
' \n |l
'This is the description file for the project.\n'
v \I’l [

'The file should use UTF-8 encoding and be written using '

'ReStructured Text. It\n'

'will be used to generate the project webpage
'should be written for\n'

'that purpose.\n'

l\nl

on PyPI, and '

'Typical contents for this file would include an overview of '

'the project, basic\n'

'usage examples, etc. Generally, including the project '

'changelog in here is not\n'
'a good idea, although a simple "What\'s New"
'most recent version\n'
'may be appropriate.’,
'description_content_type': None,
'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {'last_day': -1, 'last_month': -1, 'last_week':
'home_page': 'https://github.com/pypa/sampleproject’',
'keywords': 'sample setuptools development',

'"license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypi.org/project/sampleproject/"',

section for the '

_l}l

(continues on next page)

8.12. pprint — Data pretty printer

279

https://pypi.org

The Python Library Reference, Release 3.11.0

(continued from previous page)

'platform': 'UNKNOWN',
'project_url': 'https://pypi.org/project/sampleproject/’,
'project_urls': {'Download': 'UNKNOWN',

'Homepage': 'https://github.com/pypa/sampleproject'},
'release_url': 'https://pypi.org/project/sampleproject/1.2.0/",
'requires_dist': None,
'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0'"}

The result can be limited to a certain depth (ellipsis is used for deeper contents):

>>> pprint.pprint (project_info, depth=1)

{'author': 'The Python Packaging Authority',

'author_email': 'pypa-dev@googlegroups.com',

'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'
" \nl
l\nl
'This is the description file for the project.\n'
l\nl

'The file should use UTF-8 encoding and be written using '
'ReStructured Text. It\n'
'will be used to generate the project webpage on PyPI, and '
'should be written for\n'
'that purpose.\n'
l\nl
'Typical contents for this file would include an overview of '
'the project, basic\n'
'usage examples, etc. Generally, including the project '
'changelog in here is not\n'
'a good idea, although a simple "What\'s New" section for the '
'most recent version\n'
'may be appropriate.’',

'description_content_type': None,

'docs_url': None,

'download_url': 'UNKNOWN',

'downloads': {...},

'home_page': 'https://github.com/pypa/sampleproject’,

'keywords': 'sample setuptools development',

'license': 'MIT',

'maintainer': None,

'maintainer_email': None,

'name': 'sampleproject',

'package_url': 'https://pypil.org/project/sampleproject/’,

'platform': 'UNKNOWN',

'project_url': 'https://pypi.org/project/sampleproject/"',

'project_urls': {...},

'release_url': 'https://pypi.org/project/sampleproject/1.2.0/",

'requires_dist': None,

'requires_python': None,

'summary': 'A sample Python project',

'version': '1.2.0'}

Additionally, maximum character width can be suggested. If a long object cannot be split, the specified width will be
exceeded:

>>> pprint.pprint (project_info, depth=1, width=60)
{'author': 'The Python Packaging Authority',
'author_email': 'pypa-dev@googlegroups.com',

(continues on next page)

280 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

(continued from previous page)

'bugtrack_url': None,

'classifiers': [...],

'description': 'A sample Python project\n'
L= e —— \nV
l\nl

'This is the description file for the '
'project.\n'
n\nv
'The file should use UTF-8 encoding and be '
'written using ReStructured Text. It\n'
'will be used to generate the project '
'webpage on PyPI, and should be written '
'for\n'
'that purpose.\n'
-\nv
'Typical contents for this file would '
'include an overview of the project, '
'basic\n'
'usage examples, etc. Generally, including '
'the project changelog in here is not\n'
'a good idea, although a simple "What\'s '
'New" section for the most recent version\n'
'may be appropriate.’',
'description_content_type': None,
'docs_url': None,
'download_url': 'UNKNOWN',
'downloads': {...},
'home_page': 'https://github.com/pypa/sampleproject’',
'keywords': 'sample setuptools development',
'license': 'MIT',
'maintainer': None,
'maintainer_email': None,
'name': 'sampleproject',
'package_url': 'https://pypi.org/project/sampleproject/"',
'platform': 'UNKNOWN',
'project_url': 'https://pypi.org/project/sampleproject/"',
'project_urls': {...},
'release_url': 'https://pypi.org/project/sampleproject/1.2.0/',
'requires_dist': None,
'requires_python': None,
'summary': 'A sample Python project',
'version': '1.2.0'}

8.13 reprlib — Alternate repr () implementation

Source code: Lib/reprlib.py

The reprlib module provides a means for producing object representations with limits on the size of the resulting
strings. This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

class reprlib.Repr
Class which provides formatting services useful in implementing functions similar to the built-in repr () ; size
limits for different object types are added to avoid the generation of representations which are excessively long.
reprlib.aRepr

This is an instance of Repr which is used to provide the repr () function described below. Changing the
attributes of this object will affect the size limits used by repr () and the Python debugger.

8.13. reprlib — Alternate repr () implementation 281

https://github.com/python/cpython/tree/3.11/Lib/reprlib.py

The Python Library Reference, Release 3.11.0

reprlib.repr (obj)
This is the repr () method of aRepr. It returns a string similar to that returned by the built-in function of
the same name, but with limits on most sizes.

In addition to size-limiting tools, the module also provides a decorator for detecting recursive callsto __repr__ ()
and substituting a placeholder string instead.
@reprlib.recursive_repr (fillvalue="..")

Decorator for __repr__ () methods to detect recursive calls within the same thread. If a recursive call is
made, the fillvalue is returned, otherwise, the usual __repr__ () call is made. For example:

>>> from reprlib import recursive_repr
>>> class MyList (list):
@recursive_repr ()
def _ _repr__ (self):
return '<' + '|'.join (map (repr, self)) + '>'

>>> m = MyList ('abc'")
>>> m.append (m)

>>> m.append('x")

>>> print (m)
<'a'|'b'|'c'"|[...|"x">

New in version 3.2.

8.13.1 Repr Objects

Repr instances provide several attributes which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.
Repr.fillvalue

This string is displayed for recursive references. It defaults to

New in version 3.11.

Repr.maxlevel
Depth limit on the creation of recursive representations. The default is 6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr .maxset

Repr.maxfrozenset

Repr.maxdeque

Repr.maxarray
Limits on the number of entries represented for the named object type. The default is 4 for maxdict, 5 for
maxarray,and 6 for the others.

Repr.maxlong
Maximum number of characters in the representation for an integer. Digits are dropped from the middle. The
default is 40.

Repr.maxstring

Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is 30.

Repr.maxother

This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner as maxstring. The defaultis 20.

282 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

Repr.repr (obj)

The equivalent to the built-in repr () that uses the formatting imposed by the instance.

Repr.reprl (obj, level)

Recursive implementation used by repr (). This uses the type of obj to determine which formatting method to
call, passing it obj and level. The type-specific methods should call repr1 () to perform recursive formatting,
with level - 1 for the value of level in the recursive call.

Repr.repr_TYPE (obj, level)

Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name, TYPE is replaced by ' _'.join (type (obj) .__name__ .split ()). Dispatch to
these methods is handled by repr1 (). Type-specific methods which need to recursively format a value should
call self.reprl (subobj, level - 1).

8.13.2 Subclassing Repr Objects

The use of dynamic dispatching by Repr. repri () allows subclasses of Repr to add support for additional built-
in object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

import reprlib
import sys

class MyRepr (reprlib.Repr) :

def repr_TextIOWrapper (self, obj, level):
if obj.name in {'<stdin>', '<stdout>', '<stderr>'}:
return obj.name
return repr (obj)

aRepr = MyRepr ()
print (aRepr.repr (sys.stdin)) # prints '<stdin>'

8.14 enum — Support for enumerations

New in version 3.4.

Source code: Lib/enum.py

Important
This page contains the API reference information. For tutorial information and discussion of more advanced topics,
see

* Basic Tutorial

¢ Advanced Tutorial

¢ Enum Cookbook

An enumeration:
* is a set of symbolic names (members) bound to unique values
e can be iterated over to return its members in definition order

* uses call syntax to return members by value

8.14. enum — Support for enumerations 283

https://github.com/python/cpython/tree/3.11/Lib/enum.py

The Python Library Reference, Release 3.11.0

* uses index syntax to return members by name

Enumerations are created either by using class syntax, or by using function-call syntax:

>>>

>>>
>>>

>>>
>>>

from enum import Enum

class syntax
class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 3

functional syntax
Color = Enum('Color', ['RED', 'GREEN', 'BLUE'])

Even though we can use class syntax to create Enums, Enums are not normal Python classes. See How are Enums

different? for more details.

Note: Nomenclature

¢ The class Color is an enumeration (or enum)

¢ The attributes Color .RED, Color .GREEN, etc., are enumeration members (or members) and are function-

¢ The enum members have names and values (the name of Color .RED is RED, the value of Color .BLUE is

ally constants.

3, etc.)

8.14.1 Module Contents

EnumType

The type for Enum and its subclasses.
Enum

Base class for creating enumerated constants.
IntEnum

Base class for creating enumerated constants that are also subclasses of int. (Notes)
StrEnum

Base class for creating enumerated constants that are also subclasses of st r. (Notes)
Flag

Base class for creating enumerated constants that can be combined using the bitwise opera-
tions without losing their 71 ag membership.

IntFlag

Base class for creating enumerated constants that can be combined using the bitwise operators
without losing their TntF'1ag membership. IntF1ag members are also subclasses of int.
(Notes)

EnumCheck

An enumeration with the values CONTINUOUS, NAMED_FLAGS, and UNIQUE, for use with
verify () to ensure various constraints are met by a given enumeration.

FlagBoundary

284

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

An enumeration with the values STRICT, CONFORM, EJECT, and KEEP which allows for
more fine-grained control over how invalid values are dealt with in an enumeration.

auto

Instances are replaced with an appropriate value for Enum members. St rEnum defaults to

the lower-cased version of the member name, while other Enums default to 1 and increase
from there.

property ()

Allows Enum members to have attributes without conflicting with member names.

unique ()

Enum class decorator that ensures only one name is bound to any one value.

verify ()

Enum class decorator that checks user-selectable constraints on an enumeration.

member ()

Make obj a member. Can be used as a decorator.

nonmember ()

Do not make ob 7 a member. Can be used as a decorator.

New in version 3.6: Flag, IntFlag, auto

New in version 3.11: St rEnum, EnumCheck, FlagBoundary, property, member, nonmember

8.14.2 Data Types

class enum.EnumType

EnumType is the metaclass for enum enumerations. It is possible to subclass EnumType — see Subclassing
EnumType for details.

EnumType is responsible for setting the correct __repr__ (),__str__ (),__format__ (),and__re-

duce___ () methods on the final enum, as well as creating the enum members, properly handling duplicates,
providing iteration over the enum class, etc.

__contains__ (cls, member)

Returns True if member belongs to the c1s:

>>> some_var = Color.RED
>>> some_var in Color
True

Note: In Python 3.12 it will be possible to check for member values and not just members; until then,
a TypeError will be raised if a non-Enum-member is used in a containment check.

__dir__ (cls)

Returns ['__class_ ', '__doc__ ', '_ _members_ ', '_ module_ '] and the names
of the members in cls:

>>> dir (Color)

['BLUE', 'GREEN', 'RED', '_ class__', '_ _contains_ ', '__doc__', '__
—getitem__ ', '__init_subclass__', '__iter_ ', '__len__', '__members__ ', '_
—_module__ ', '__name__ ', '_ _qualname__ ']

8.14. enum — Support for enumerations 285

The Python Library Reference, Release 3.11.0

__getattr__ (cls, name)

Returns the Enum member in cls matching name, or raises an At t ributeError:

>>> Color.GREEN
<Color.GREEN: 2>

__getitem__ (cls, name)

Returns the Enum member in cls matching name, or raises an KeyError:

>>> Color['BLUE']
<Color.BLUE: 3>

__iter__ (cls)

Returns each member in cls in definition order:

>>> list (Color)
[<Color.RED: 1>, <Color.GREEN: 2>, <Color.BLUE: 3>]

__len__ (cls)

Returns the number of member in cls:

>>> len (Color)
3

__reversed__ (cls)

Returns each member in cls in reverse definition order:

>>> list (reversed(Color))
[<Color.BLUE: 3>, <Color.GREEN: 2>, <Color.RED: 1>]

class enum.Enum
Enum is the base class for all enum enumerations.
name

The name used to define the Enum member:

>>> Color.BLUE.name
'BLUE'

value

The value given to the Enum member:

>>> Color.RED.value
1

Note: Enum member values

Member values can be anything: int, str, etc.. If the exact value is unimportant you may use auto
instances and an appropriate value will be chosen for you. Care must be taken if you mix auto with
other values.

ignore

ignore isonly used during creation and is removed from the enumeration once creation is complete.

ignore is a list of names that will not become members, and whose names will also be removed
from the completed enumeration. See TimePeriod for an example.

286 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

__call__ (cls, value, names=None, *, module=None, qualname=None, type=None, start=1,
boundary=None)

This method is called in two different ways:

* to look up an existing member:
cls The enum class being called.
value The value to lookup.

* touse the c1s enum to create a new enum:
cls The enum class being called.
value The name of the new Enum to create.
names The names/values of the members for the new Enum.
module The name of the module the new Enum is created in.
qualname The actual location in the module where this Enum can be found.
type A mix-in type for the new Enum.
start The first integer value for the Enum (used by aut o)

boundary How to handle out-of-range values from bit operations (71 ag only)

_dir__ (self)
Returns ['__class__ ', '__doc__', '__module__', 'name', 'value'] and any
public methods defined on self.__class__:
>>> from datetime import date
>>> class Weekday (Enum) :
MONDAY = 1
TUESDAY = 2
WEDNESDAY = 3
THURSDAY = 4
FRIDAY = 5
SATURDAY = 6
SUNDAY = 7
@classmethod
def today(cls):
ce print ('today is ' % cls(date.today () .isoweekday ()) .name)
>>> dir (Weekday.SATURDAY)
['_class__', '_doc__'", '_eq__', '__hash__ ', '__module__', 'name', 'today
—', 'value']

_generate_next_value_ (name, start, count, last_values)

name The name of the member being defined (e.g. ‘RED’).

start The start value for the Enum; the default is 1.

count The number of members currently defined, not including this one.
last_values A list of the previous values.

A staticmethod that is used to determine the next value returned by aut o:

>>> from enum import auto
>>> class PowersOfThree (Enum) :
@staticmethod
def _generate_next_value_ (name, start, count, last_values):
return (count + 1) * 3
FIRST = auto()
SECOND = auto()

(continues on next page)

8.14. enum — Support for enumerations 287

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> PowersOfThree.SECOND.value
6

__init_subclass__ (cls, **kwds)

A classmethod that is used to further configure subsequent subclasses. By default, does nothing.

missing (cls, value)

A classmethod for looking up values not found in cls. By default it does nothing, but can be overridden

to implement custom search behavior:

>>> from enum import StrEnum
>>> class Build (StrEnum) :

DEBUG = auto ()

OPTIMIZED = auto ()

@classmethod

def _missing_(cls, value):
value = value.lower ()

for member in cls:

if member.value ==
return member

Ce return None

>>> Build.DEBUG.value

'debug’

>>> Build ('deBUG")

<Build.DEBUG: 'debug'>

value:

__repr__ (self)

Returns the string used for repr() calls. By default, returns the Enum name, member name, and value,

but can be overridden:

>>> class OtherStyle (Enum) :
ALTERNATE = auto ()
OTHER = auto()
SOMETHING_ELSE = auto ()
def _ _repr_ (self):
cls_name
Ce . return f'{cls_name
>>> OtherStyle.ALTERNATE,
—ALTERNATE } "
(OtherStyle.ALTERNATE,

self. class .
self.name /'
str (OtherStyle.ALTERNATE) ,

'OtherStyle.ALTERNATE',

___name___
£" /OtherStyle.

'OtherStyle.ALTERNATE"')

__str__ (self)

Returns the string used for str() calls. By default, returns the Enum name and member name, but can be

overridden:

>>> class OtherStyle (Enum) :
ALTERNATE = auto ()
OTHER = auto()
SOMETHING_ELSE = auto()
def _ str_ (self):

return f'{self.name/}'

—~ALTERNATE } "
(<OtherStyle.ALTERNATE:

1>,

>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f"/{OtherStyle.

'ALTERNATE',

'ALTERNATE")

__format__ (self)

Returns the string used for format() and f-string calls. By default, returns __str___ () returns, but can

be overridden:

288

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

>>> class OtherStyle (Enum) :
ALTERNATE = auto ()
OTHER = auto()
SOMETHING_ELSE = auto()
def __ format__ (self, spec):
. return f'{self.name}'
>>> OtherStyle.ALTERNATE, str (OtherStyle.ALTERNATE), f"{OtherStyle.
—ALTERNATE } "
(<OtherStyle.ALTERNATE: 1>, 'OtherStyle.ALTERNATE', 'ALTERNATE')

Note: Using auto with Enum results in integers of increasing value, starting with 1.

class enum.IntEnum

IntEnum is the same as Enum, but its members are also integers and can be used anywhere that an integer can be
used. If any integer operation is performed with an IntEnum member, the resulting value loses its enumeration
status.

>>> from enum import IntEnum
>>> class Numbers (IntEnum) :

ONE = 1
TWO = 2
THREE = 3

>>> Numbers.THREE
<Numbers.THREE: 3>

>>> Numbers.ONE + Numbers.TWO
3

>>> Numbers.THREE + 5

8

>>> Numbers.THREE ==

True

Note: Using auto with TntEnum results in integers of increasing value, starting with 1.

Changedinversion3.11: __str__ () isnowint.__str__ () tobetter support the replacement of existing
constants use-case. ___format__ () was already int._ format__ () for that same reason.

class enum.StrEnum

StrEnum is the same as Enum, but its members are also strings and can be used in most of the same places that
a string can be used. The result of any string operation performed on or with a StrEnum member is not part of
the enumeration.

Note: There are places in the stdlib that check for an exact str instead of a str subclass (i.e.
type (unknown) == str instead of isinstance (str, unknown)), and in those locations you
will need to use str (StrEnum.member).

Note: Using auto with St rEnum results in the lower-cased member name as the value.

Note: __ _str__ () isstr.__str__ () to better support the replacement of existing constants use-case.
_ format__ () islikewise str.__ format__ () for that same reason.

New in version 3.11.

8.14. enum — Support for enumerations 289

The Python Library Reference, Release 3.11.0

class enum.Flag

Flag members support the bitwise operators & (AND), | (OR), ~ (XOR), and ~ (INVERT); the results of those

operators are members of the enumeration.

__contains___ (self, value)

Returns True if value is in self:

>>> from enum import Flag, auto
>>> class Color (Flag):
RED = auto ()
GREEN = auto()
.. BLUE = auto()
>>> purple = Color.RED | Color.BLUE
>>> white = Color.RED | Color.GREEN | Color.BLUE
>>> Color.GREEN in purple
False
>>> Color.GREEN in white
True
>>> purple in white
True
>>> white in purple
False

__iter__ (self):

Returns all contained members:

>>> list (Color.RED)

[<Color.RED: 1>]

>>> list (purple)

[<Color.RED: 1>, <Color.BLUE: 4>]

_len__ (self):

Returns number of members in flag:

>>> len (Color.GREEN)
1

>>> len (white)

3

__bool__ (self):
Returns True if any members in flag, False otherwise:

>>> bool (Color.GREEN)
True

>>> bool (white)

True

>>> black = Color (0)
>>> pool (black)

False

__or__ (self, other)

Returns current flag binary or’ed with other:

>>> Color.RED | Color.GREEN
<Color.RED|GREEN: 3>

__and___(self, other)

Returns current flag binary and’ed with other:

290

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

>>> purple & white
<Color.RED|BLUE: 5>

>>> purple & Color.GREEN
<Color: 0>

__xor__(self, other)

Returns current flag binary xor’ed with other:

>>> purple ~ white
<Color.GREEN: 2>

>>> purple © Color.GREEN
<Color.RED|GREEN|BLUE: 7>

__invert__ (self):

Returns all the flags in type(self) that are not in self:

>>> ~white

<Color: 0>

>>> ~purple
<Color.GREEN: 2>

>>> ~Color.RED
<Color.GREEN|BLUE: 6>

_numeric_repr_ ()

Function used to format any remaining unnamed numeric values. Default is the value’s repr; common
choices are hex () and oct ().

Note: Using auto with F'1ag results in integers that are powers of two, starting with 1.

Changed in version 3.11: The repr() of zero-valued flags has changed. It is now::

>>> Color (0)
<Color: 0>

class enum.IntFlag

IntFlag is the same as Flag, but its members are also integers and can be used anywhere that an integer can be
used.

>>> from enum import IntFlag, auto
>>> class Color (IntFlag):
RED = auto()
GREEN = auto()
. BLUE = auto ()
>>> Color.RED & 2
<Color: 0>
>>> Color.RED | 2
<Color.RED|GREEN: 3>

If any integer operation is performed with an IntFlag member, the result is not an IntFlag:

>>> Color.RED + 2
3

If a Flag operation is performed with an IntFlag member and:
e the result is a valid IntFlag: an IntFlag is returned
* the result is not a valid IntFlag: the result depends on the FlagBoundary setting

The repr() of unnamed zero-valued flags has changed. It is now:

8.14. enum — Support for enumerations 291

The Python Library Reference, Release 3.11.0

>>> Color (0)
<Color: 0>

Note: Using auto with TntF1ag results in integers that are powers of two, starting with 1.

Changedinversion3.11: __str__ () isnowint.__str__ () tobetter support the replacement of existing
constants use-case. __format__ () wasalready int.__format__ () for that same reason.
class enum.EnumCheck
EnumCheck contains the options used by the verify () decorator to ensure various constraints; failed con-
straints result ina ValueError.
UNIQUE
Ensure that each value has only one name:

>>> from enum import Enum, verify, UNIQUE
>>> @verify (UNIQUE)
class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 3
CRIMSON = 1
Traceback (most recent call last):

ValueError: aliases found in <enum 'Color'>: CRIMSON -> RED

CONTINUOUS

Ensure that there are no missing values between the lowest-valued member and the highest-valued mem-
ber:

>>> from enum import Enum, verify, CONTINUOUS
>>> @verify (CONTINUOUS)
class Color (Enum) :
RED = 1
GREEN = 2
BLUE = 5
Traceback (most recent call last):

ValueError: invalid enum 'Color': missing values 3, 4

NAMED_FLAGS

Ensure that any flag groups/masks contain only named flags — useful when values are specified instead of
being generated by auto ()

>>> from enum import Flag, verify, NAMED_FLAGS
>>> @verify (NAMED_FLAGS)
class Color (Flag):

RED = 1
GREEN = 2
BLUE = 4
WHITE = 15
NEON = 31

Traceback (most recent call last):

ValueError: invalid Flag 'Color': aliases WHITE and NEON are missing.
—combined values of 0x18 [use enum.show_flag_values(value) for details]

Note: CONTINUOUS and NAMED_FLAGS are designed to work with integer-valued members.

292 Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

New in version 3.11.

class enum.FlagBoundary
FlagBoundary controls how out-of-range values are handled in Flag and its subclasses.
STRICT

Out-of-range values cause a Va lueError to be raised. This is the default for F1ag:

>>> from enum import Flag, STRICT

>>> class StrictFlag(Flag, boundary=STRICT) :
RED = auto()
GREEN = auto ()

. BLUE = auto()

>>> StrictFlag(2**2 + 2**4)

Traceback (most recent call last):

ValueError: <flag 'StrictFlag'> invalid value 20
given 0b0O 10100
allowed 0bO 00111

CONFORM

Out-of-range values have invalid values removed, leaving a valid Flag value:

>>> from enum import Flag, CONFORM
>>> class ConformFlag (Flag, boundary=CONFORM) :
RED = auto()
GREEN auto ()
. BLUE = auto()
>>> ConformFlag (2**2 + 2*%*4)
<ConformFlag.BLUE: 4>

EJECT

Out-of-range values lose their Flag membership and revert to int. This is the default for TntFlag:

>>> from enum import Flag, EJECT

>>> class EjectFlag(Flag, boundary=EJECT) :
RED = auto()
GREEN auto ()

.. BLUE = auto()

>>> EjectFlag (2**2 + 2**4)

20

KEEP

Out-of-range values are kept, and the Flag membership is kept. This is used for some stdlib flags:

>>> from enum import Flag, KEEP
>>> class KeepFlag(Flag, boundary=KEEP) :
RED = auto ()
GREEN = auto()
.. BLUE = auto()
>>> KeepFlag(2**2 + 2*%*4)
<KeepFlag.BLUE|16: 20>

New in version 3.11.

8.14. enum — Support for enumerations 293

The Python Library Reference, Release 3.11.0

Supported __dunder__ names

__members___isaread-only ordered mapping of member_name:member items. It is only available on the class.

__new___ (), if specified, must create and return the enum members; it is also a very good idea to set the member’s
value appropriately. Once all the members are created it is no longer used.

Supported _sunder_ names

name —name of the member
value — value of the member; can be set / modified in __new___
missing — alookup function used when a value is not found; may be overridden

ignore —alist of names, either asa 1 i st ora st r, that will not be transformed into members, and will
be removed from the final class

order —used in Python 2/3 code to ensure member order is consistent (class attribute, removed during
class creation)

_generate_next_value_ —used to get an appropriate value for an enum member; may be overridden

Note: For standard Enum classes the next value chosen is the last value seen incremented by one.

For F1ag classes the next value chosen will be the next highest power-of-two, regardless of the
last value seen.

New in version 3.6: _missing_,_order_,_generate_next_value_

New in version 3.7: _ignore_

8.14.3 Utilities and Decorators

class enum.auto

auto can be used in place of a value. If used, the Enum machinery will call an Enum’s _gener-—
ate_next_value_ () to get an appropriate value. For Enum and IntEnum that appropriate value will
be the last value plus one; for Flag and IntFlag it will be the first power-of-two greater than the last value; for
StrEnum it will be the lower-cased version of the member’s name.

_generate_next_value_ can be overridden to customize the values used by aufo.

Note: in 3.13 the default "generate_next_value_ will always return the highest member value incre-
mented by 1, and will fail if any member is an incompatible type.

@enum.property

A decorator similar to the built-in property, but specifically for enumerations. It allows member attributes to
have the same names as members themselves.

Note: the property and the member must be defined in separate classes; for example, the value and name
attributes are defined in the Enum class, and Enum subclasses can define members with the names value and
name.

New in version 3.11.

294

Chapter 8. Data Types

The Python Library Reference, Release 3.11.0

@enum.unique

A class decorator specifically for enumerations. It searches an enumeration’s __members
any aliases it finds; if any are found ValueError is raised with the details:

, gathering

>>> from enum import Enum, unique
>>> Q@Qunique
class Mistake (Enum) :

ONE = 1
TWO = 2
THREE 3
FOUR = 3

Traceback (most recent call last):

ValueError: duplicate values found in <enum 'Mistake'>: FOUR -> THREE

@enum.verify

A class decorator specifically for enumerations. Members from EnumCheck are used to specify which
constraints should be checked on the decorated enumeration.

New in version 3.11.

@enum.member

A decorator for use in enums: its target will become a member.
New in version 3.11.

@enum.nonmember

A decorator for use in enums: its target will not become a member.

New in version 3.11.

8.14.4 Notes

IntEnum, StrEnum,and TntFlag

These three enum types are designed to be drop-in replacements for existing integer- and
string-based values; as such, they have extra limitations:

e str__ uses the value and not the name of the enum member

e format__ ,becauseituses ___str__, will also use the value of the enum member
instead of its name

If you do not need/want those limitations, you can either create your own base class by mixing
in the int or str type yourself:

>>> from enum import Enum
>>> class MyIntEnum(int, Enum) :
pass

or you can reassign the appropriate st r (), etc., in your enum:

>>> from enum import IntEnum
>>> class MyIntEnum (IntEnum) :
__str_ = IntEnum.__ _str__

8.14. enum — Support for enumerations 295

The Python Library Reference, Release 3.11.0

8.15 graphlib — Functionality to operate with graph-like struc-
tures

Source code: Lib/graphlib.py

class graphlib.TopologicalSorter (graph=None)

Provides functionality to topologically sort a graph of hashable nodes.

A topological order is a linear ordering of the vertices in a graph such that for every directed edge u -> v from
vertex u to vertex v, vertex u comes before vertex v in the ordering. For instance, the vertices of the graph
may represent tasks to be performed, and the edges may represent constraints that one task must be performed
before another; in this example, a topological ordering is just a valid sequence for the tasks. A complete
topological ordering is possible if and only if the graph has no directed cycles, that is, if it is a directed acyclic
graph.

If the optional graph argument is provided it must be a dictionary representing a directed acyclic graph where
the keys are nodes and the values are iterables of all predecessors of that node in the graph (the nodes that have
edges that point to the value in the key). Additional nodes can be added to the graph using the add () method.

In the general case, the steps required to perform the sorting of a given graph are as follows:

* Create an instance of the TopologicalSorter with an optional initial graph.

Add additional nodes to the graph.
e Call prepare () on the graph.

e While is_active () is True, iterate over the nodes returned by get_ready () and process them.
Call done () on each node as it finishes processing.

In case just an immediate sorting of the nodes in the graph is required and no parallelism is involved, the
convenience method TopologicalSorter.static_order () can be used directly:

>>> graph = {"D": {"B", "Cll}, "CH: {"All}, "BH: {"All}}
>>> ts = TopologicalSorter (graph)

>>> tuple(ts.static_order())

('Al, 'c', 'B', 'D')

The class is designed to easily support parallel processing of the nodes as they become ready. For instance:

topological_sorter = TopologicalSorter ()
Add nodes to 'topological_sorter'...

topological_sorter.prepare ()
while topological_sorter.is_active():
for node in topological_sorter.get_ready () :
Worker threads or processes take nodes to work on off the
'task_queue' queue.
task_queue.put (node)

When the work for a node is done, workers put the node in
'finalized_tasks_queue' so we can get more nodes to work on.

The definition of 'is_active () ' guarantees that, at this point, at
least one node has been placed on 'task_queue' that hasn't yet

been passed to 'done()', so this blocking 'get ()' must (eventually)
succeed. After calling 'done()', we loop back to call 'get_ready()'
again, so put newly freed nodes on 'task_queue' as soon as
logically possible.

node = finalized_tasks_queue.get ()

topological_sorter.done (node)

H o W R R W W R

296 Chapter 8. Data Types

https://github.com/python/cpython/tree/3.11/Lib/graphlib.py

The Python Library Reference, Release 3.11.0

add (node, *predecessors)

Add a new node and its predecessors to the graph. Both the node and all elements in predecessors must
be hashable.

If called multiple times with the same node argument, the set of dependencies will be the union of all
dependencies passed in.

It is possible to add a node with no dependencies (predecessors is not provided) or to provide a dependency
twice. If a node that has not been provided before is included among predecessors it will be automatically
added to the graph with no predecessors of its own.

Raises ValueError if called after prepare ().

prepare ()

Mark the graph as finished and check for cycles in the graph. If any cycle is detected, CycleError will
be raised, but get_ready () can still be used to obtain as many nodes as possible until cycles block
more progress. After a call to this function, the graph cannot be modified, and therefore no more nodes
can be added using add ().

is_active ()
Returns True if more progress can be made and False otherwise. Progress can be made if cy-
cles do not block the resolution and either there are still nodes ready that haven’t yet been returned by

TopologicalSorter.get_ready () orthe number of nodes marked TopologicalSorter.
done () is less than the number that have been returned by TopologicalSorter.get_ready ().

The _ _bool__ () method of this class defers to this function, so instead of:

if ts.is_active():

it is possible to simply do:

if ts:

Raises ValueError if called without calling prepare () previously.

done (*nodes)

Marks a set of nodes returned by TopologicalSorter.get_ready () as processed, un-
blocking any successor of each node in nodes for being returned in the future by a call to
TopologicalSorter.get_ready().

Raises ValueError if any node in nodes has already been marked as processed by a previous call to
this method or if a node was not added to the graph by using TopologicalSorter.add (), if called
without calling prepare () or if node has not yet been returned by get_ready ().

get_ready ()

Returns a tuple with all the nodes that are ready. Initially it returns all nodes with no predecessors,
and once those are marked as processed by calling TopologicalSorter.done (), further calls will
return all new nodes that have all their predecessors already processed. Once no more progress can be
made, empty tuples are returned.

Raises ValueError if called without calling prepare () previously.

static_order ()

Returns an iterator object which will iterate over nodes in a topological order. When using this method,
prepare () and done () should not be called. This method is equivalent to:

def static_order (self):
self.prepare ()
while self.is_active():
node_group = self.get_ready ()
yield from node_group
self.done (*node_group)

8.15. graphlib — Functionality to operate with graph-like structures 297

The Python Library Reference, Release 3.11.0

The particular order that is returned may depend on the specific order in which the items were inserted

in the graph. For example:

>>> ts = TopologicalSorter()
>>> ts.add (3, 2, 1)

>>> ts.add (1, 0)

>>> print ([*ts.static_order()])
(2, 0, 1, 3]

>>> ts2 = TopologicalSorter ()
>>> ts2.add (1, 0)

>>> ts2.add(3, 2, 1)

>>> print ([*ts2.static_order()])
[0, 2, 1, 3]

This is due to the fact that “0” and “2” are in the same level in the graph (they would have been returned
in the same call to get_ ready ()) and the order between them is determined by the order of insertion.

If any cycle is detected, CycleError will be raised.
New in version 3.9.

8.15.1 Exceptions

The graphlib module defines the following exception classes:

exception graphlib.CycleError

Subclass of ValueError raised by TopologicalSorter.prepare () if cycles exist in the working
graph. If multiple cycles exist, only one undefined choice among them will be reported and included in the

exception.

The detected cycle can be accessed via the second element in the args attribute of the exception instance and
consists in a list of nodes, such that each node is, in the graph, an immediate predecessor of the next node in
the list. In the reported list, the first and the last node will be the same, to make it clear that it is cyclic.

298

Chapter 8. Data Types

CHAPTER
NINE

NUMERIC AND MATHEMATICAL MODULES

The modules described in this chapter provide numeric and math-related functions and data types. The numbers
module defines an abstract hierarchy of numeric types. The math and cmat h modules contain various mathematical
functions for floating-point and complex numbers. The decima 1 module supports exact representations of decimal
numbers, using arbitrary precision arithmetic.

The following modules are documented in this chapter:

9.1 numbers — Numeric abstract base classes

Source code: Lib/numbers.py

The numbers module (PEP 3141) defines a hierarchy of numeric abstract base classes which progressively define
more operations. None of the types defined in this module are intended to be instantiated.
class numbers.Number

The root of the numeric hierarchy. If you just want to check if an argument x is a number, without caring what
kind, use isinstance (x, Number).

9.1.1 The numeric tower

class numbers.Complex

Subclasses of this type describe complex numbers and include the operations that work on the built-in com—
plex type. These are: conversions to complex and bool, real, imag, +, —, *, /, **, abs (), con—
jugate (), ==,and !=. All except — and ! = are abstract.

real

Abstract. Retrieves the real component of this number.
imag

Abstract. Retrieves the imaginary component of this number.

abstractmethod conjugate ()

Abstract. Returns the complex conjugate. For example, (1+37) .conjugate () == (1-37).

class numbers.Real

To Complex, Real adds the operations that work on real numbers.

In short, those are: a conversion to float, math.trunc (), round (), math.floor (), math.
ceil(),divmod(),//,%,<, <=, >, and >=.

Real also provides defaults for complex (), real, imag,and conjugate ().

299

https://github.com/python/cpython/tree/3.11/Lib/numbers.py
https://peps.python.org/pep-3141/

The Python Library Reference, Release 3.11.0

class numbers.Rational
Subtypes Real and adds numerator and denominator properties. It also provides a default for
float ().

The numerator and denominator values should be instances of Tntegral and should be in lowest
terms with denominator positive.
numerator

Abstract.

denominator
Abstract.

class numbers.Integral

Subtypes Rat ional and adds a conversion to int. Provides defaults for f1oat (), numerator, and
denominator. Adds abstract methods for pow () with modulus and bit-string operations: <<, >>, &, *, |,

9.1.2 Notes for type implementors

Implementors should be careful to make equal numbers equal and hash them to the same values. This may be
subtle if there are two different extensions of the real numbers. For example, fractions.Fractionimplements
hash () as follows:

def _ hash__ (self):

if self.denominator ==
Get integers right.
return hash (self.numerator)

Expensive check, but definitely correct.

if self == float (self):
return hash (float (self))

else:
Use tuple's hash to avoid a high collision rate on
simple fractions.
return hash((self.numerator, self.denominator))

Adding More Numeric ABCs

There are, of course, more possible ABCs for numbers, and this would be a poor hierarchy if it precluded the
possibility of adding those. You can add MyFoo between Complex and Real with:

class MyFoo (Complex) :
MyFoo.register (Real)

Implementing the arithmetic operations

We want to implement the arithmetic operations so that mixed-mode operations either call an implementation whose
author knew about the types of both arguments, or convert both to the nearest built in type and do the operation there.
For subtypes of Tntegral, this means that __add__ () and __radd___ () should be defined as:

class MyIntegral (Integral):

def _ add_ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (self, other)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff(self, other)

(continues on next page)

300 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

(continued from previous page)

else:
return NotImplemented

def _ radd__ (self, other):
if isinstance (other, MyIntegral):
return do_my_adding_stuff (other, self)
elif isinstance (other, OtherTypeIKnowAbout) :
return do_my_other_adding_stuff (other, self)
elif isinstance (other, Integral):
return int (other) + int (self)
elif isinstance (other, Real):
return float (other) + float (self)
elif isinstance (other, Complex):
return complex (other) + complex(self)
else:
return NotImplemented

There are S different cases for a mixed-type operation on subclasses of Complex. I'll refer to all of the above code
that doesn’t refer to MyIntegral and OtherTypeIKnowAbout as “boilerplate”. a will be an instance of A,
which is a subtype of Complex(a : A <: Complex),andb : B <: Complex. I'll considera + b:

1. If A defines an __add___ () which accepts b, all is well.

2. If A falls back to the boilerplate code, and it were to return a value from __add___ (), we’d miss the possibility
that B defines a more intelligent __radd__ (), so the boilerplate should return Not Implemented from
__add__ (). (Or A may not implement __add__ () atall.)

3. Then B’s __radd__ () gets a chance. If it accepts a, all is well.

4. If it falls back to the boilerplate, there are no more possible methods to try, so this is where the default imple-
mentation should live.

5.IfB <: A,PythontriesB.__radd__ before A.__add__. This is ok, because it was implemented with
knowledge of 2, so it can handle those instances before delegating to Complex.

IfA <: ComplexandB <: Real without sharing any other knowledge, then the appropriate shared operation
is the one involving the built in complex, and both __radd__ () sland there, so a+tb == b+a.

Because most of the operations on any given type will be very similar, it can be useful to define a helper function
which generates the forward and reverse instances of any given operator. For example, fractions.Fraction
uses:

def _operator_fallbacks (monomorphic_operator, fallback_operator):
def forward(a, b):

if isinstance (b, (int, Fraction)):
return monomorphic_operator (a, b)

elif isinstance (b, float):
return fallback_operator (float (a), b)

elif isinstance (b, complex):
return fallback_operator (complex(a), b)

else:
return NotImplemented
forward. name = '__ ' + fallback_operator. name + ' '
forward._ doc_ = monomorphic_operator._ doc_

def reverse (b, a):
if isinstance(a, Rational):
Includes ints.
return monomorphic_operator (a, b)
elif isinstance (a, Real):
return fallback_operator (float (a), float (b))
elif isinstance(a, Complex):
return fallback_operator (complex(a), complex (b))

(continues on next page)

9.1. numbers — Numeric abstract base classes 301

The Python Library Reference, Release 3.11.0

(continued from previous page)

else:
return NotImplemented
reverse. name__ = '__r' + fallback_operator. name__ + ' '
reverse. doc_ = monomorphic_operator. doc

return forward, reverse

def _add(a, b):
”"”a + b"””
return Fraction (a.numerator * b.denominator +
b.numerator * a.denominator,
a.denominator * b.denominator)

_add__, __radd__ = _operator_fallbacks(_add, operator.add)

9.2 math — Mathematical functions

This module provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from the cmat h module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the
first place.

The following functions are provided by this module. Except when explicitly noted otherwise, all return values are
floats.

9.2.1 Number-theoretic and representation functions

math.ceil (x)

Return the ceiling of x, the smallest integer greater than or equal to x. If x is not a float, delegates to x .
__ceil__, which should return an Tntegral value.

math.comb (n, k)

Return the number of ways to choose & items from 7 items without repetition and without order.
Evaluateston! / (k! * (n - k)!) when k <= n and evaluates to zero when k > n.

Also called the binomial coefficient because it is equivalent to the coefficient of k-th term in polynomial ex-
pansion of (1 + x)"

Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the argu-
ments are negative.

New in version 3.8.

math.copysign (x, y)

Return a float with the magnitude (absolute value) of x but the sign of y. On platforms that support signed
zeros, copysign (1.0, -0.0) returns -1.0.

math . fabs (x)
Return the absolute value of x.

302 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

math.factorial (n)

Return n factorial as an integer. Raises ValueError if n is not integral or is negative.
Deprecated since version 3.9: Accepting floats with integral values (like 5. 0) is deprecated.

math.floor (x)

Return the floor of x, the largest integer less than or equal to x. If x is not a float, delegates to x . ___floor__,
which should return an Tntegral value.

math. fmod (x, y)

Return fmod (x, V), as defined by the platform C library. Note that the Python expression x % y may
not return the same result. The intent of the C standard is that fmod (x, y) be exactly (mathematically;
to infinite precision) equal to x — n*y for some integer n such that the result has the same sign as x and
magnitude less than abs (y). Python’s x % vy returns a result with the sign of y instead, and may not be
exactly computable for float arguments. For example, fmod (-1e-100, 1e100) is -1e-100, but the
result of Python’s -1e-100 % 1e100is 1e100-1e-100, which cannot be represented exactly as a float,
and rounds to the surprising 1e100. For this reason, function fmod () is generally preferred when working
with floats, while Python’s x % v is preferred when working with integers.

math. frexp (x)

Return the mantissa and exponent of x as the pair (m, e).mis afloatand e is an integer such that x ==
* 2**e exactly. If x is zero, returns (0.0, 0),otherwise 0.5 <= abs (m) < 1. Thisisused to “pick
apart” the internal representation of a float in a portable way.

math . £sum (iterable)

Return an accurate floating point sum of values in the iterable. Avoids loss of precision by tracking multiple
intermediate partial sums:

>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
0.9999999999999999

>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .11)
1.0

The algorithm’s accuracy depends on IEEE-754 arithmetic guarantees and the typical case where the rounding
mode is half-even. On some non-Windows builds, the underlying C library uses extended precision addition
and may occasionally double-round an intermediate sum causing it to be off in its least significant bit.

For further discussion and two alternative approaches, see the ASPN cookbook recipes for accurate floating
point summation.
math.ged (*integers)

Return the greatest common divisor of the specified integer arguments. If any of the arguments is nonzero,
then the returned value is the largest positive integer that is a divisor of all arguments. If all arguments are
zero, then the returned value is 0. gcd () without arguments returns 0.

New in version 3.5.

Changed in version 3.9: Added support for an arbitrary number of arguments. Formerly, only two arguments
were supported.

math.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e—09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater
than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

9.2. math — Mathematical functions 303

https://code.activestate.com/recipes/393090/
https://code.activestate.com/recipes/393090/

The Python Library Reference, Release 3.11.0

If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs (b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically,

NaN is not considered close to any other value, including NaN. inf and —inf are only considered close to
themselves.

New in version 3.5.
See also:

PEP 485 — A function for testing approximate equality
math.isfinite (x)
Return True if x is neither an infinity nor a NaN, and Fal se otherwise. (Note that 0 . 0 is considered finite.)
New in version 3.2.
math.isinf (x)
Return True if x is a positive or negative infinity, and False otherwise.
math.isnan (x)
Return True if x is a NaN (not a number), and False otherwise.
math.isqrt (n)

Return the integer square root of the nonnegative integer n. This is the floor of the exact square root of n, or
equivalently the greatest integer a such that 4 < n.

For some applications, it may be more convenient to have the least integer a such that n < a2, or in other words

the ceiling of the exact square root of n. For positive #, this can be computed usinga = 1 + isgrt(n -
1).

New in version 3.8.
math.lcm (*integers)

Return the least common multiple of the specified integer arguments. If all arguments are nonzero, then the
returned value is the smallest positive integer that is a multiple of all arguments. If any of the arguments is
zero, then the returned value is 0. 1cm () without arguments returns 1.

New in version 3.9.
math.ldexp (x, i)

Return x * (2**1i). This is essentially the inverse of function frexp ().
math.modf (x)

Return the fractional and integer parts of x. Both results carry the sign of x and are floats.
math.nextafter (x, y)

Return the next floating-point value after x towards y.
If x is equal to y, return y.
Examples:
* math.nextafter (x, math.inf) goes up: towards positive infinity.
* math.nextafter (x, -math.inf) goes down: towards minus infinity.
e math.nextafter (x, 0.0) goes towards zero.
* math.nextafter (x, math.copysign(math.inf, x)) goes away from zero.
See also math.ulp ().

New in version 3.9.

304 Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.11.0

math.perm (n, k=None)

Return the number of ways to choose k items from »n items without repetition and with order.
Evaluateston! / (n - k) ! when k <= n and evaluates to zero when k > n.
If k is not specified or is None, then k defaults to n and the function returns n!.

Raises TypeError if either of the arguments are not integers. Raises ValueError if either of the argu-
ments are negative.

New in version 3.8.

math.prod (iterable, *, start=1)

Calculate the product of all the elements in the input iterable. The default start value for the product is 1.

When the iterable is empty, return the start value. This function is intended specifically for use with numeric
values and may reject non-numeric types.

New in version 3.8.

math.remainder (x, y)

Return the IEEE 754-style remainder of x with respect to y. For finite x and finite nonzero y, this is the
difference x — n*y, where n is the closest integer to the exact value of the quotient x / y. If x / yis
exactly halfway between two consecutive integers, the nearest even integer is used for n. The remainder r =
remainder (x, vy) thusalways satisfies abs (r) <= 0.5 * abs(y).

Special cases follow IEEE 754: in particular, remainder (x, math.inf) is x for any finite x, and
remainder (x, 0) and remainder (math.inf, x) raise ValueError for any non-NaN x. If
the result of the remainder operation is zero, that zero will have the same sign as x.

On platforms using IEEE 754 binary floating-point, the result of this operation is always exactly representable:
no rounding error is introduced.

New in version 3.7.

math.trunc (x)

Return x with the fractional part removed, leaving the integer part. This rounds toward 0: trunc () is equiv-
alent to f1oor () for positive x, and equivalent to ceil () for negative x. If x is not a float, delegates to
X.__trunc__, which should return an Tntegral value.

math.ulp (x)
Return the value of the least significant bit of the float x:

e If x is a NaN (not a number), return x.
 If x is negative, return ulp (-x) .
* If x is a positive infinity, return x.

 If x is equal to zero, return the smallest positive denormalized representable float (smaller than the mini-
mum positive normalized float, sys. float_info.min).

« If x is equal to the largest positive representable float, return the value of the least significant bit of x, such
that the first float smaller than xis x — ulp (x).

* Otherwise (x is a positive finite number), return the value of the least significant bit of x, such that the
first float bigger than xis x + ulp (x).

ULP stands for “Unit in the Last Place”.
See also math.nextafter () and sys. float_info.epsilon.
New in version 3.9.

Note that frexp () and modf () have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

9.2. math — Mathematical functions 305

The Python Library Reference, Release 3.11.0

For the ceil (), floor (),and modf () functions, note that all floating-point numbers of sufficiently large mag-
nitude are exact integers. Python floats typically carry no more than 53 bits of precision (the same as the platform C
double type), in which case any float x with abs (x) >= 2**52 necessarily has no fractional bits.

9.2.2 Power and logarithmic functions

math.cbrt (x)
Return the cube root of x.
New in version 3.11.
math.exp (x)

Return e raised to the power x, where e = 2.718281... is the base of natural logarithms. This is usually more
accurate thanmath.e ** xor pow (math.e, x).

math.exp2 (x)
Return 2 raised to the power x.
New in version 3.11.
math.expml (x)

Return e raised to the power x, minus 1. Here e is the base of natural logarithms. For small floats x, the
subtraction in exp (x) — 1 can result in a significant loss of precision; the expm1 () function provides a
way to compute this quantity to full precision:

>>> from math import exp, expml

>>> exp(le-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expml (1le—5) # result accurate to full precision

1.0000050000166668e-05

New in version 3.2.
math.log (x[, base])

With one argument, return the natural logarithm of x (to base e).

With two arguments, return the logarithm of x to the given base, calculated as 1og (x) /1log (base).
math.loglp (x)

Return the natural logarithm of /+x (base e). The result is calculated in a way which is accurate for x near
zZero.

math.log2 (x)
Return the base-2 logarithm of x. This is usually more accurate than log (x, 2).
New in version 3.3.

See also:

int.bit_length () returns the number of bits necessary to represent an integer in binary, excluding the
sign and leading zeros.

math.loglO (x)
Return the base-10 logarithm of x. This is usually more accurate than 1og (x, 10).
math.pow (x, y)

Return x raised to the power y. Exceptional cases follow the IEEE 754 standard as far as possible. In particular,
pow (1.0, x) and pow(x, 0.0) always return 1.0, even when x is a zero or a NaN. If both x and y
are finite, x is negative, and v is not an integer then pow (x, y) is undefined, and raises ValueError.

Unlike the built-in ** operator, math.pow () converts both its arguments to type f1oat. Use ** or the
built-in pow () function for computing exact integer powers.

306 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Loss_of_significance

The Python Library Reference, Release 3.11.0

Changed in version 3.11: The special cases pow (0.0, —-inf) and pow (-0.0, -inf) were changed to
return inf instead of raising ValueError, for consistency with IEEE 754.

math.sqrt (x)
Return the square root of x.

9.2.3 Trigonometric functions

math.acos (x)

Return the arc cosine of x, in radians. The result is between 0 and pi.

math.asin (x)

Return the arc sine of x, in radians. The result is between —pi /2 and pi/2.

math.atan (x)

Return the arc tangent of x, in radians. The result is between —pi/2 and pi/2.

math.atan2 (y, x)

Return atan (y / x), inradians. The result is between —pi and pi. The vector in the plane from the
origin to point (x, vy) makes this angle with the positive X axis. The point of atan2 () is that the signs of
both inputs are known to it, so it can compute the correct quadrant for the angle. For example, atan (1) and
atan2 (1, 1) arebothpi/4,butatan2 (-1, -1)is-3*pi/4.

math.cos (x)

Return the cosine of x radians.

math.dist (p, q)

Return the Euclidean distance between two points p and g, each given as a sequence (or iterable) of coordinates.
The two points must have the same dimension.

Roughly equivalent to:

sqgrt (sum((px — gx) ** 2.0 for px, gx in zip(p, 9)))

New in version 3.8.

math.hypot (*coordinates)
Return the Euclidean norm, sgrt (sum(x**2 for x in coordinates)). This is the length of the
vector from the origin to the point given by the coordinates.

For a two dimensional point (x,), this is equivalent to computing the hypotenuse of a right triangle using
the Pythagorean theorem, sqrt (x*x + y*y).

Changed in version 3.8: Added support for n-dimensional points. Formerly, only the two dimensional case was
supported.

Changed in version 3.10: Improved the algorithm’s accuracy so that the maximum error is under 1 ulp (unit in
the last place). More typically, the result is almost always correctly rounded to within 1/2 ulp.

math.sin (x)

Return the sine of x radians.

math.tan (x)

Return the tangent of x radians.

9.2. math — Mathematical functions 307

The Python Library Reference, Release 3.11.0

9.2.4 Angular conversion

math.degrees (x)
Convert angle x from radians to degrees.

math.radians (x)

Convert angle x from degrees to radians.

9.2.5 Hyperbolic functions

Hyperbolic functions are analogs of trigonometric functions that are based on hyperbolas instead of circles.

math.acosh (x)

Return the inverse hyperbolic cosine of x.

math.asinh (x)

Return the inverse hyperbolic sine of x.

math.atanh (x)
Return the inverse hyperbolic tangent of x.

math.cosh (x)

Return the hyperbolic cosine of x.

math.sinh (x)

Return the hyperbolic sine of x.

math.tanh (x)
Return the hyperbolic tangent of x.

9.2.6 Special functions

math.erf (x)

Return the error function at x.

The erf () function can be used to compute traditional statistical functions such as the cumulative standard
normal distribution:

def phi (x):
"Cumulative distribution function for the standard normal distribution'’
return (1.0 + erf(x / sqrt(2.0))) / 2.0

New in version 3.2.

math.erfec (x)

Return the complementary error function at x. The complementary error function is defined as 1.0 -
erf (x). Itis used for large values of x where a subtraction from one would cause a loss of significance.

New in version 3.2.

math.gamma (x)

Return the Gamma function at x.
New in version 3.2.

math.lgamma (x)

Return the natural logarithm of the absolute value of the Gamma function at x.

New in version 3.2.

308 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Hyperbolic_function
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_functions
https://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_functions
https://en.wikipedia.org/wiki/Error_function
https://en.wikipedia.org/wiki/Loss_of_significance
https://en.wikipedia.org/wiki/Gamma_function

The Python Library Reference, Release 3.11.0

9.2.7 Constants

math.pi
The mathematical constant 7 = 3.141592..., to available precision.

math.e
The mathematical constant e = 2.718281..., to available precision.

math.tau

The mathematical constant 7 = 6.283185..., to available precision. Tau is a circle constant equal to 27, the
ratio of a circle’s circumference to its radius. To learn more about Tau, check out Vi Hart’s video Pi is (still)
Wrong, and start celebrating Tau day by eating twice as much pie!

New in version 3.6.

math.inf
A floating-point positive infinity. (For negative infinity, use —-math.inf.) Equivalent to the output of
float ('"inf').

New in version 3.5.

math.nan

A floating-point “not a number” (NaN) value. Equivalent to the output of float ('nan'). Due to the
requirements of the IEEE-754 standard, math.nanand float ('nan') are not considered to equal to any
other numeric value, including themselves. To check whether a number is a NaN, use the i snan () function

to test for NaNs instead of i s or ==. Example:
>>> import math

>>> math.nan == math.nan

False

>>> float ('nan') == float ('nan')
False

>>> math.isnan (math.nan)

True

>>> math.isnan(float ('nan'))

True

Changed in version 3.11: It is now always available.
New in version 3.5.

CPython implementation detail: The math module consists mostly of thin wrappers around the platform C math
library functions. Behavior in exceptional cases follows Annex F of the C99 standard where appropriate. The current
implementation will raise Va lueError for invalid operations like sgqrt (-=1.0) or log (0.0) (where C99 An-
nex F recommends signaling invalid operation or divide-by-zero), and OverflowError for results that overflow
(for example, exp (1000.0)). A NaN will not be returned from any of the functions above unless one or more of
the input arguments was a NaN; in that case, most functions will return a NaN, but (again following C99 Annex F)
there are some exceptions to this rule, for example pow (float ('nan'), 0.0) orhypot (float ('nan'),
float ('inf')).

Note that Python makes no effort to distinguish signaling NaNs from quiet NaNs, and behavior for signaling NaNs
remains unspecified. Typical behavior is to treat all NaNs as though they were quiet.

See also:

Module cmath Complex number versions of many of these functions.

9.2. math — Mathematical functions 309

https://www.youtube.com/watch?v=jG7vhMMXagQ
https://www.youtube.com/watch?v=jG7vhMMXagQ
https://tauday.com/
https://en.wikipedia.org/wiki/IEEE_754

The Python Library Reference, Release 3.11.0

9.3 cmath — Mathematical functions for complex numbers

This module provides access to mathematical functions for complex numbers. The functions in this module accept
integers, floating-point numbers or complex numbers as arguments. They will also accept any Python object that has
eithera___complex__ () ora__float__ () method: these methods are used to convert the object to a complex
or floating-point number, respectively, and the function is then applied to the result of the conversion.

Note: On platforms with hardware and system-level support for signed zeros, functions involving branch cuts are
continuous on both sides of the branch cut: the sign of the zero distinguishes one side of the branch cut from the
other. On platforms that do not support signed zeros the continuity is as specified below.

9.3.1 Conversions to and from polar coordinates

A Python complex number z is stored internally using rectangular or Cartesian coordinates. It is completely deter-
mined by its real part z . real and its imaginary part z . imag. In other words:

z == z.real + z.imag*1j

Polar coordinates give an alternative way to represent a complex number. In polar coordinates, a complex number
z is defined by the modulus r and the phase angle phi. The modulus r is the distance from z to the origin, while the
phase phi is the counterclockwise angle, measured in radians, from the positive x-axis to the line segment that joins
the origin to z.

The following functions can be used to convert from the native rectangular coordinates to polar coordinates and back.

cmath.phase (x)

Return the phase of x (also known as the argument of x), as a float. phase (x) is equivalent to math.
atan?2 (x.imag, x.real). The result lies in the range [-7, 7], and the branch cut for this operation lies
along the negative real axis, continuous from above. On systems with support for signed zeros (which includes
most systems in current use), this means that the sign of the result is the same as the sign of x. imag, even
when x . imag is zero:

>>> phase (complex (-1.0, 0.0))
3.141592653589793

>>> phase (complex (1.0, -0.0))
-3.141592653589793

Note: The modulus (absolute value) of a complex number x can be computed using the built-in abs () function.
There is no separate cmath module function for this operation.

cmath.polar (x)
Return the representation of x in polar coordinates. Returns a pair (r, phi) where r is the modulus of x
and phi is the phase of x. polar (x) is equivalentto (abs (x), phase(x)).

cmath.rect (r, phi)

Return the complex number x with polar coordinates » and phi. Equivalentto r * (math.cos (phi) +
math.sin (phi)*17).

310 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

9.3.2 Power and logarithmic functions

cmath.exp (x)
Return e raised to the power x, where e is the base of natural logarithms.

cmath.log (x[, base])
Returns the logarithm of x to the given base. If the base is not specified, returns the natural logarithm of x.
There is one branch cut, from 0 along the negative real axis to -co, continuous from above.

cmath.loglO (x)
Return the base-10 logarithm of x. This has the same branch cutas 1og ().

cmath.sqrt (x)

Return the square root of x. This has the same branch cut as 1og ().

9.3.3 Trigonometric functions

cmath.acos (x)
Return the arc cosine of x. There are two branch cuts: One extends right from 1 along the real axis to oo,
continuous from below. The other extends left from -1 along the real axis to -co, continuous from above.
cmath.asin (x)

Return the arc sine of x. This has the same branch cuts as acos ().

cmath.atan (x)
Return the arc tangent of x. There are two branch cuts: One extends from 1 7j along the imaginary axis to «7,
continuous from the right. The other extends from —1 j along the imaginary axis to —7j, continuous from the
left.

cmath.cos (x)

Return the cosine of x.

cmath.sin (x)

Return the sine of x.

cmath.tan (x)

Return the tangent of x.

9.3.4 Hyperbolic functions

cmath.acosh (x)
Return the inverse hyperbolic cosine of x. There is one branch cut, extending left from 1 along the real axis to
-00, continuous from above.

cmath.asinh (x)
Return the inverse hyperbolic sine of x. There are two branch cuts: One extends from 1 j along the imaginary
axis to 7, continuous from the right. The other extends from —1 j along the imaginary axis to —e0j, continuous
from the left.

cmath.atanh (x)
Return the inverse hyperbolic tangent of x. There are two branch cuts: One extends from 1 along the real axis
to o, continuous from below. The other extends from —1 along the real axis to —oo, continuous from above.

cmath.cosh (x)

Return the hyperbolic cosine of x.

cmath.sinh (x)

Return the hyperbolic sine of x.

9.3. cmath — Mathematical functions for complex nhumbers 311

The Python Library Reference, Release 3.11.0

cmath.tanh (x)

Return the hyperbolic tangent of x.

9.3.5 Classification functions

cmath.isfinite (x)

Return True if both the real and imaginary parts of x are finite, and False otherwise.

New in version 3.2.

cmath.isinf (x)

Return True if either the real or the imaginary part of x is an infinity, and False otherwise.

cmath.isnan (x)

Return True if either the real or the imaginary part of x is a NaN, and False otherwise.

cmath.isclose (a, b, *, rel_tol=1e-09, abs_tol=0.0)

Return True if the values a and b are close to each other and False otherwise.

Whether or not two values are considered close is determined according to given absolute and relative toler-
ances.

rel_tol is the relative tolerance — it is the maximum allowed difference between a and b, relative to the larger
absolute value of a or b. For example, to set a tolerance of 5%, pass rel_tol=0.05. The default tolerance
is 1e—09, which assures that the two values are the same within about 9 decimal digits. rel_tol must be greater
than zero.

abs_tol is the minimum absolute tolerance — useful for comparisons near zero. abs_tol must be at least zero.

If no errors occur, the result will be: abs (a-b) <= max(rel_tol * max(abs(a), abs(b)),
abs_tol).

The IEEE 754 special values of NaN, inf, and —inf will be handled according to IEEE rules. Specifically,
NaN is not considered close to any other value, including NaN. inf and —inf are only considered close to
themselves.

New in version 3.5.
See also:

PEP 485 — A function for testing approximate equality

9.3.6 Constants

cmath.pi

The mathematical constant sz, as a float.

cmath.e

The mathematical constant e, as a float.

cmath.tau

The mathematical constant 7, as a float.

New in version 3.6.

cmath.inf

Floating-point positive infinity. Equivalentto f1oat ('inf").

New in version 3.6.

312

Chapter 9. Numeric and Mathematical Modules

https://peps.python.org/pep-0485/

The Python Library Reference, Release 3.11.0

cmath.infj
Complex number with zero real part and positive infinity imaginary part. Equivalent to complex (0.0,
float ('"inf')).

New in version 3.6.

cmath.nan

A floating-point “not a number” (NaN) value. Equivalent to float ('nan').
New in version 3.6.

cmath.nanj

Complex number with zero real part and NaN imaginary part. Equivalent to complex (0.0,
float('nan')).

New in version 3.6.

Note that the selection of functions is similar, but not identical, to that in module math. The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather have math. sgrt (-1) raise an exception than return a complex number. Also note that the functions
defined in cmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

A note on branch cuts: They are curves along which the given function fails to be continuous. They are a necessary
feature of many complex functions. It is assumed that if you need to compute with complex functions, you will
understand about branch cuts. Consult almost any (not too elementary) book on complex variables for enlightenment.
For information of the proper choice of branch cuts for numerical purposes, a good reference should be the following:

See also:

Kahan, W: Branch cuts for complex elementary functions; or, Much ado about nothing’s sign bit. In Iserles, A., and
Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211.

9.4 decimal — Decimal fixed point and floating point arithmetic

Source code: Lib/decimal.py

The decimal module provides support for fast correctly rounded decimal floating point arithmetic. It offers several
advantages over the £ 1oat datatype:

Decimal “is based on a floating-point model which was designed with people in mind, and necessarily has
a paramount guiding principle — computers must provide an arithmetic that works in the same way as the
arithmetic that people learn at school.” — excerpt from the decimal arithmetic specification.

Decimal numbers can be represented exactly. In contrast, numbers like 1.1 and 2.2 do not have exact
representations in binary floating point. End users typically would not expect 1.1 + 2.2 to display as
3.3000000000000003 as it does with binary floating point.

The exactness carries over into arithmetic. In decimal floating point, 0.1 + 0.1 + 0.1 - 0.3 isexactly
equal to zero. In binary floating point, the resultis 5.5511151231257827e-017. While near to zero,
the differences prevent reliable equality testing and differences can accumulate. For this reason, decimal is
preferred in accounting applications which have strict equality invariants.

The decimal module incorporates a notion of significant places sothat 1.30 + 1.201is 2.50. The trailing
zero is kept to indicate significance. This is the customary presentation for monetary applications. For mul-
tiplication, the “schoolbook” approach uses all the figures in the multiplicands. For instance, 1.3 * 1.2
gives 1 .56 while 1.30 * 1.20 gives 1.5600.

Unlike hardware based binary floating point, the decimal module has a user alterable precision (defaulting to
28 places) which can be as large as needed for a given problem:

9.4. decimal — Decimal fixed point and floating point arithmetic 313

https://github.com/python/cpython/tree/3.11/Lib/decimal.py

The Python Library Reference, Release 3.11.0

>>> from decimal import *

>>> getcontext () .prec = 6

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857")

>>> getcontext () .prec = 28

>>> Decimal (1) / Decimal (7)

Decimal ('0.1428571428571428571428571429")

* Both binary and decimal floating point are implemented in terms of published standards. While the built-in
float type exposes only a modest portion of its capabilities, the decimal module exposes all required parts of
the standard. When needed, the programmer has full control over rounding and signal handling. This includes
an option to enforce exact arithmetic by using exceptions to block any inexact operations.

¢ The decimal module was designed to support “without prejudice, both exact unrounded decimal arithmetic
(sometimes called fixed-point arithmetic) and rounded floating-point arithmetic.” — excerpt from the decimal
arithmetic specification.

The module design is centered around three concepts: the decimal number, the context for arithmetic, and signals.

A decimal number is immutable. It has a sign, coefficient digits, and an exponent. To preserve significance, the coef-
ficient digits do not truncate trailing zeros. Decimals also include special values such as Infinity, -Infinity,
and NaN. The standard also differentiates —0 from +0.

The context for arithmetic is an environment specifying precision, rounding rules, limits on exponents, flags
indicating the results of operations, and trap enablers which determine whether signals are treated as excep-
tions. Rounding options include ROUND_CEILING, ROUND_DOWN, ROUND_FLOOR, ROUND_HALF _DOWN,
ROUND_HALF_EVEN, ROUND_HALF_UP, ROUND_UP, and ROUND_ 05UP.

Signals are groups of exceptional conditions arising during the course of computation. Depending on the needs of
the application, signals may be ignored, considered as informational, or treated as exceptions. The signals in the deci-
mal module are: Clamped, TnvalidOperation, DivisionByZero, Inexact, Rounded, Subnormal,
Overflow, Underflowand FloatOperation.

For each signal there is a flag and a trap enabler. When a signal is encountered, its flag is set to one, then, if the trap
enabler is set to one, an exception is raised. Flags are sticky, so the user needs to reset them before monitoring a
calculation.

See also:

* IBM’s General Decimal Arithmetic Specification, The General Decimal Arithmetic Specification.

9.4.1 Quick-start Tutorial

The usual start to using decimals is importing the module, viewing the current context with get context () and,
if necessary, setting new values for precision, rounding, or enabled traps:

>>> from decimal import *
>>> getcontext ()
Context (prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,

capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])
>>> getcontext () .prec = 7 # Set a new precision

Decimal instances can be constructed from integers, strings, floats, or tuples. Construction from an integer or a float
performs an exact conversion of the value of that integer or float. Decimal numbers include special values such as
NaN which stands for “Not a number”, positive and negative Infinity, and -0:

>>> getcontext () .prec = 28
>>> Decimal (10)

Decimal ('10")

>>> Decimal ('3.14")

(continues on next page)

314 Chapter 9. Numeric and Mathematical Modules

http://speleotrove.com/decimal/decarith.html

The Python Library Reference, Release 3.11.0

(continued from previous page)

Decimal ('3.14")

>>> Decimal (3.14)

Decimal ('3.140000000000000124344978758017532527446746826171875")
>>> Decimal ((0, (3, 1, 4), -2))

Decimal ('3.14")

>>> Decimal (str (2.0 ** 0.5))

Decimal ('1.4142135623730951")

>>> Decimal (2) ** Decimal('0.5")

Decimal ('1.414213562373095048801688724")
>>> Decimal ('NaN')

Decimal ('NaN')

>>> Decimal ('-Infinity")

Decimal ('-Infinity")

If the FloatOperation signal is trapped, accidental mixing of decimals and floats in constructors or ordering
comparisons raises an exception:

>>> ¢ = getcontext ()

>>> c.traps[FloatOperation] = True
>>> Decimal (3.14)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5") < 3.7
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
>>> Decimal ('3.5') == 3.5
True

New in version 3.3.

The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding
only come into play during arithmetic operations.

>>> getcontext () .prec = 6

>>> Decimal ('3.0")

Decimal ('3.0")

>>> Decimal ('3.1415926535")

Decimal ('3.1415926535")

>>> Decimal ('3.1415926535") + Decimal('2.7182818285")
Decimal ('5.85987")

>>> getcontext () .rounding = ROUND_UP

>>> Decimal ('3.1415926535") + Decimal('2.7182818285")
Decimal ('5.85988")

If the internal limits of the C version are exceeded, constructing a decimal raises ITnvalidOperation:

>>> Decimal ("1e9999999999999999999")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]

Changed in version 3.3.

Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:

>>> data = list (map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25".split()))
>>> max (data)

(
Decimal ('9.25")
>>> min (data)
Decimal ('0.03")

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 315

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> sorted(data)

[Decimal ('0.03'"), Decimal('1.00'), Decimal('1.34"),
Decimal ('2.35"), Decimal('3.45'"), Decimal('9.25")]
>>> sum(data)

Decimal ('19.29")

>>> a,b,c = datal[:3]

>>> str(a)

'1.34"

>>> float (a)

1.34

>>> round(a, 1)

Decimal('1.3")

>>> int (a)

1

>>> a * 5

Decimal ('6.70")

>>> a * b

Decimal ('2.5058")

>>> c % a

Decimal ('0.77")

Decimal ('1.87"),

And some mathematical functions are also available to Decimal:

>>> getcontext () .prec = 28

>>> Decimal (2) .sqgrt ()

Decimal ('1.414213562373095048801688724")
>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")
>>> Decimal ('10") .1n ()

Decimal ('2.302585092994045684017991455")
>>> Decimal ('10") .1ogl0 ()

Decimal('1")

The quantize () method rounds a number to a fixed exponent. This method is useful for monetary applications
that often round results to a fixed number of places:

>>> Decimal ('7.325") .quantize (Decimal('.01"), rounding=ROUND_DOWN)
Decimal ('7.32")

>>> Decimal ('7.325") .quantize (Decimal('1l."'), rounding=ROUND_UP)
Decimal ('8")

As shown above, the getcontext () function accesses the current context and allows the settings to be changed.
This approach meets the needs of most applications.

For more advanced work, it may be useful to create alternate contexts using the Context() constructor. To make an
alternate active, use the setcontext () function.

In accordance with the standard, the decimal module provides two ready to use standard contexts, BasicCon—
text and ExtendedContext. The former is especially useful for debugging because many of the traps are
enabled:

>>> myothercontext = Context (prec=60, rounding=ROUND_HALF_DOWN)

>>> setcontext (myothercontext)

>>> Decimal (1) / Decimal (7)

Decimal ('0.142857142857142857142857142857142857142857142857142857142857")

>>> ExtendedContext

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[], traps=[])

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (7)

(continues on next page)

316 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

(continued from previous page)

Decimal ('0.142857143")
>>> Decimal (42) / Decimal (0)
Decimal ('Infinity'")

>>> setcontext (BasicContext)
>>> Decimal (42) / Decimal (0)
Traceback (most recent call last):
File "<pyshell#143>", line 1, in -toplevel-
Decimal (42) / Decimal (0)
DivisionByZero: x / O

Contexts also have signal flags for monitoring exceptional conditions encountered during computations. The flags
remain set until explicitly cleared, so it is best to clear the flags before each set of monitored computations by using
the clear_flags () method.

>>> setcontext (ExtendedContext)

>>> getcontext () .clear_flags ()

>>> Decimal (355) / Decimal (113)

Decimal ('3.14159292")

>>> getcontext ()

Context (prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])

The flags entry shows that the rational approximation to Pi was rounded (digits beyond the context precision were
thrown away) and that the result is inexact (some of the discarded digits were non-zero).

Individual traps are set using the dictionary in the t raps field of a context:

>>> setcontext (ExtendedContext)

>>> Decimal (1) / Decimal (0)

Decimal ('Infinity'")

>>> getcontext () .traps[DivisionByZero] = 1

>>> Decimal (1) / Decimal (0)

Traceback (most recent call last):

File "<pyshell#112>", line 1, in -toplevel-

Decimal (1) / Decimal (0)

DivisionByZero: x / O

Most programs adjust the current context only once, at the beginning of the program. And, in many applications,
data is converted to Decimal with a single cast inside a loop. With context set and decimals created, the bulk of
the program manipulates the data no differently than with other Python numeric types.

9.4.2 Decimal objects

class decimal.Decimal (value='0', context=None)
Construct a new Decimal object based from value.
value can be an integer, string, tuple, f1oat, or another Decimal object. If no value is given, returns

Decimal ('0"). If value is a string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters, as well as underscores throughout, are removed:

sign R

digit si= 'O | LY '2' | '3' | 4Y | 'S' | '6' | 7' | '8' | 'O
indicator = 'e' | 'E!

digits ::= digit [digit]...

decimal-part ::= digits '.'" [digits] | ['.'] digits

exponent-part ::= indicator [sign] digits

infinity ::= 'Infinity' | 'Inf'

nan ::= 'NaN' [digits] | 'sNaN' [digits]

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic 317

The Python Library Reference, Release 3.11.0

(continued from previous page)

numeric-value ::= decimal-part [exponent-part] | infinity
numeric-string

[sign] numeric-value | [sign] nan

Other Unicode decimal digits are also permitted where digit appears above. These include decimal digits
from various other alphabets (for example, Arabic-Indic and Devanagart digits) along with the fullwidth digits
"\uff£10"' through "\uff19"'.

If value is a tuple, it should have three components, a sign (0 for positive or 1 for negative), a tuple
of digits, and an integer exponent. For example, Decimal ((0, (1, 4, 1, 4), -3)) returns
Decimal ('1.414").

If value is a f1oat, the binary floating point value is losslessly converted to its exact decimal equivalent. This
conversion can often require 53 or more digits of precision. For example, Decimal (float ('1.1"')) con-
verts to Decimal ('1.100000000000000088817841970012523233890533447265625").

The context precision does not affect how many digits are stored. That is determined exclusively by the number
of digits in value. For example, Decimal ('3.00000") records all five zeros even if the context precision
is only three.

The purpose of the context argument is determining what to do if value is a malformed string. If the context
traps TnvalidOperation, an exception is raised; otherwise, the constructor returns a new Decimal with
the value of NaN.

Once constructed, Decimal objects are immutable.
Changed in version 3.2: The argument to the constructor is now permitted to be a 1 oat instance.

Changed in version 3.3: f1oat arguments raise an exception if the 1 oat Operation trapis set. By default
the trap is off.

Changed in version 3.6: Underscores are allowed for grouping, as with integral and floating-point literals in
code.

Decimal floating point objects share many properties with the other built-in numeric types such as f1oat and
int. All of the usual math operations and special methods apply. Likewise, decimal objects can be copied,
pickled, printed, used as dictionary keys, used as set elements, compared, sorted, and coerced to another type
(such as float or int).

There are some small differences between arithmetic on Decimal objects and arithmetic on integers and floats.
When the remainder operator % is applied to Decimal objects, the sign of the result is the sign of the dividend
rather than the sign of the divisor:

>>> (=7) % 4

1
>>> Decimal (-7) % Decimal (4)
Decimal ('-3")

The integer division operator / / behaves analogously, returning the integer part of the true quotient (truncating
towards zero) rather than its floor, so as to preserve the usual identity x == (x // y) * y + x % y:

>> -7 // 4

-2
>>> Decimal (-7) // Decimal (4)
Decimal ('-1")

The % and // operators implement the remainder and divide-integer operations (respectively) as
described in the specification.

Decimal objects cannot generally be combined with floats or instances of fractions.Fraction in arith-
metic operations: an attempttoadda Decimaltoa f1loat, forexample, willraisea TypeError. However,
it is possible to use Python’s comparison operators to compare a Decimal instance x with another number
y. This avoids confusing results when doing equality comparisons between numbers of different types.

318

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

Changed in version 3.2: Mixed-type comparisons between Decimal instances and other numeric types are
now fully supported.

In addition to the standard numeric properties, decimal floating point objects also have a number of specialized
methods:
adjusted ()

Return the adjusted exponent after shifting out the coefficient’s rightmost digits until only the lead digit
remains: Decimal ('321e+5"') .adjusted () returns seven. Used for determining the position of
the most significant digit with respect to the decimal point.

as_integer_ratio ()

Return a pair (n, d) of integers that represent the given Decimal instance as a fraction, in lowest
terms and with a positive denominator:

>>> Decimal ('-3.14") .as_integer_ratio()
(=157, 50)

The conversion is exact. Raise OverflowError on infinities and ValueError on NaNs.
New in version 3.6.

as_tuple()
Return a named tuple representation of the number: DecimalTuple (sign, digits, expo-
nent).

canonical ()
Return the canonical encoding of the argument. Currently, the encoding of a Decimal instance is
always canonical, so this operation returns its argument unchanged.

compare (other, context=None)

Compare the values of two Decimal instances. compare () returns a Decimal instance, and if either
operand is a NaN then the result is a NaN:

a or b is a NaN ==> Decimal ('NaN'")
a <b ==> Decimal('-1")
a ==> ==> Decimal ('0")

a >b ==> Decimal('1l")

compare_signal (other, context=None)
This operation is identical to the compare () method, except that all NaNs signal. That is, if neither
operand is a signaling NaN then any quiet NaN operand is treated as though it were a signaling NaN.
compare_total (other, context=None)

Compare two operands using their abstract representation rather than their numerical value. Similar to
the compare () method, but the result gives a total ordering on Decimal instances. Two Decimal
instances with the same numeric value but different representations compare unequal in this ordering:

>>> Decimal ('12.0") .compare_total (Decimal('12"))
Decimal ('-1")

Quiet and signaling NaNs are also included in the total ordering. The result of this function is Deci—
mal ('0"') if both operands have the same representation, Decimal ('—1") if the first operand is
lower in the total order than the second, and Decimal ('1"') if the first operand is higher in the total
order than the second operand. See the specification for details of the total order.

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

9.4. decimal — Decimal fixed point and floating point arithmetic 319

The Python Library Reference, Release 3.11.0

compare_total_mag (other, context=None)

Compare two operands using their abstract representation rather than their value as in com-—
pare_total (),butignoring the sign of each operand. x . compare_total_mag (y) isequivalent
to x.copy_abs () .compare_total (y.copy_abs()).

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

conjugate ()
Just returns self, this method is only to comply with the Decimal Specification.

copy_abs ()
Return the absolute value of the argument. This operation is unaffected by the context and is quiet: no
flags are changed and no rounding is performed.

copy_negate ()
Return the negation of the argument. This operation is unaffected by the context and is quiet: no flags
are changed and no rounding is performed.

copy_sign (other, context=None)

Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For

example:
>>> Decimal ('2.3") .copy_sign(Decimal ('-1.5"))
Decimal ('-2.3")

This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

exp (context=None)

Return the value of the (natural) exponential function e * *x at the given number. The result is correctly
rounded using the ROUND_HALF _EVEN rounding mode.

>>> Decimal (1) .exp ()

Decimal ('2.718281828459045235360287471")

>>> Decimal (321) .exp ()

Decimal ('2.561702493119680037517373933E+139")

classmethod from_float (f)

Alternative constructor that only accepts instances of f1oat or int.

Note Decimal.from_float (0.1) is not the same as Decimal ('0.1"). Since 0.1 is
not exactly representable in binary floating point, the value is stored as the nearest repre-
sentable value which is 0x1.999999999999ap—-4. That equivalent value in decimal is 0.
1000000000000000055511151231257827021181583404541015625.

Note: From Python 3.2 onwards, a Decimal instance can also be constructed directly from a f1oat.

>>> Decimal.from_float (0.1)

Decimal ('0.1000000000000000055511151231257827021181583404541015625")
>>> Decimal.from_float (float ('nan'))

Decimal ('NaN"'")

>>> Decimal.from_float (float ("inf'))

Decimal ('"Infinity'")

>>> Decimal.from_float (float ('—-inf'"))

Decimal ('-Infinity")

New in version 3.1.

320

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

£ma (other, third, context=None)

Fused multiply-add. Return self*other+third with no rounding of the intermediate product self *other.

>>> Decimal (2) .fma (3, 5)
Decimal ('11")

is_canonical ()
Return True if the argument is canonical and FaIse otherwise. Currently, a Decimal instance is
always canonical, so this operation always returns True.
is_finite ()
Return True if the argument is a finite number, and Fa I se if the argument is an infinity or a NaN.
is_infinite()
Return True if the argument is either positive or negative infinity and False otherwise.
is_nan{()

Return True if the argument is a (quiet or signaling) NaN and Fa I se otherwise.

is_normal (context=None)
Return True if the argument is a normal finite number. Return Fal se if the argument is zero, subnor-
mal, infinite or a NaN.

is_gnan ()
Return True if the argument is a quiet NaN, and Fa I se otherwise.

is_signed()
Return True if the argument has a negative sign and F'a 1 se otherwise. Note that zeros and NaNs can
both carry signs.

is_snan()

Return True if the argument is a signaling NaN and False otherwise.

is_subnormal (context=None)

Return True if the argument is subnormal, and Fa I se otherwise.

is_zero()

Return True if the argument is a (positive or negative) zero and F'a I se otherwise.

1n (context=None)
Return the natural (base e) logarithm of the operand. The result is correctly rounded using the
ROUND__HALF_EVEN rounding mode.

1o0g10 (context=None)
Return the base ten logarithm of the operand. The result is correctly rounded using the
ROUND_HALF_EVEN rounding mode.

logb (context=None)
For a nonzero number, return the adjusted exponent of its operand as a Decima I instance. If the operand
is a zero then Decimal ('-Infinity"') is returned and the DivisionByZero flag is raised. If
the operand is an infinity then Decimal ('Infinity") is returned.

logical_and (other, context=None)
logical_and() is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise and of the two operands.

logical_invert (context=None)

logical_invert () is alogical operation. The result is the digit-wise inversion of the operand.

logical_or (other, context=None)

logical_or () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise or of the two operands.

9.4.

decimal — Decimal fixed point and floating point arithmetic 321

The Python Library Reference, Release 3.11.0

logical_xor (other, context=None)
logical_xor () is alogical operation which takes two logical operands (see Logical operands). The
result is the digit-wise exclusive or of the two operands.

max (other, context=None)

Like max (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

max_mag (other, context=None)
Similar to the max () method, but the comparison is done using the absolute values of the operands.

min (other, context=None)

Likemin (self, other) except that the context rounding rule is applied before returning and that
NaN values are either signaled or ignored (depending on the context and whether they are signaling or
quiet).

min_mag (other, context=None)
Similar to the min () method, but the comparison is done using the absolute values of the operands.

next_minus (context=None)

Return the largest number representable in the given context (or in the current thread’s context if no
context is given) that is smaller than the given operand.

next_plus (context=None)

Return the smallest number representable in the given context (or in the current thread’s context if no
context is given) that is larger than the given operand.

next_toward (other, context=None)

If the two operands are unequal, return the number closest to the first operand in the direction of the
second operand. If both operands are numerically equal, return a copy of the first operand with the sign
set to be the same as the sign of the second operand.

normalize (context=None)

Normalize the number by stripping the rightmost trailing zeros and converting any result equal to Dec—
imal ('0"') toDecimal ('0e0"). Used for producing canonical values for attributes of an equiva-
lence class. For example, Decimal ('32.100"') and Decimal ('0.321000e+2") both normal-
ize to the equivalent value Decimal ('32.1").

number_class (context=None)

Return a string describing the class of the operand. The returned value is one of the following ten strings.
e "-Infinity", indicating that the operand is negative infinity.
e "-Normal", indicating that the operand is a negative normal number.
e "—Subnormal", indicating that the operand is negative and subnormal.
e "—Zero", indicating that the operand is a negative zero.
* "+Zero", indicating that the operand is a positive zero.
e "+Subnormal", indicating that the operand is positive and subnormal.
* "+Normal™", indicating that the operand is a positive normal number.
e "+Infinity", indicating that the operand is positive infinity.
* "NaN", indicating that the operand is a quiet NaN (Not a Number).
e "sNaN", indicating that the operand is a signaling NaN.

quantize (exp, rounding=None, context=None)

Return a value equal to the first operand after rounding and having the exponent of the second operand.

322 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

>>> Decimal ('1.41421356") .quantize (Decimal ('1.000"))
Decimal ('1.414")

Unlike other operations, if the length of the coefficient after the quantize operation would be greater
than precision, then an TnvalidOperation is signaled. This guarantees that, unless there is an error
condition, the quantized exponent is always equal to that of the right-hand operand.

Also unlike other operations, quantize never signals Underflow, even if the result is subnormal and inexact.

If the exponent of the second operand is larger than that of the first then rounding may be necessary.
In this case, the rounding mode is determined by the rounding argument if given, else by the given
context argument; if neither argument is given the rounding mode of the current thread’s context is
used.

An error is returned whenever the resulting exponent is greater than Emax or less than Etiny.

radix ()
Return Decimal (10), the radix (base) in which the Decimal class does all its arithmetic. Included
for compatibility with the specification.

remainder_near (other, context=None)

Return the remainder from dividing self by other. This differs from self % other in that the sign of
the remainder is chosen so as to minimize its absolute value. More precisely, the return value is se 1 £ -
n * other where n is the integer nearest to the exact value of self / other, and if two integers
are equally near then the even one is chosen.

If the result is zero then its sign will be the sign of self.

>>> Decimal (18) .remainder_near (Decimal (10))
Decimal ('-2")
>>> Decimal (25) .remainder_near (Decimal (10))
Decimal ('5")
>>> Decimal (35) .remainder_near (Decimal (10))
Decimal ('-5")

rotate (other, context=None)

Return the result of rotating the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to rotate. If the second operand is positive then rotation
is to the left; otherwise rotation is to the right. The coefficient of the first operand is padded on the left
with zeros to length precision if necessary. The sign and exponent of the first operand are unchanged.

same_quantum (other, context=None)
Test whether self and other have the same exponent or whether both are NaN.
This operation is unaffected by context and is quiet: no flags are changed and no rounding is performed.
As an exception, the C version may raise InvalidOperation if the second operand cannot be converted
exactly.

scaleb (other, context=None)
Return the first operand with exponent adjusted by the second. Equivalently, return the first operand
multiplied by 10**other. The second operand must be an integer.

shift (other, context=None)

Return the result of shifting the digits of the first operand by an amount specified by the second operand.
The second operand must be an integer in the range -precision through precision. The absolute value of
the second operand gives the number of places to shift. If the second operand is positive then the shift
is to the left; otherwise the shift is to the right. Digits shifted into the coefficient are zeros. The sign and
exponent of the first operand are unchanged.

sqrt (context=None)

Return the square root of the argument to full precision.

9.4. decimal — Decimal fixed point and floating point arithmetic 323

The Python Library Reference, Release 3.11.0

to_eng_string (context=None)
Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

For example, this converts Decimal ('123E+1"') toDecimal ('1.23E+3").

to_integral (rounding=None, context=None)
Identical to the to_integral_value () method. The to_integral name has been kept for
compatibility with older versions.
to_integral_exact (rounding=None, context=None)
Round to the nearest integer, signaling Tnexact or Rounded as appropriate if rounding occurs. The
rounding mode is determined by the rounding parameter if given, else by the given context. If
neither parameter is given then the rounding mode of the current context is used.
to_integral_value (rounding=None, context=None)

Round to the nearest integer without signaling Tnexact or Rounded. If given, applies rounding;
otherwise, uses the rounding method in either the supplied context or the current context.

Logical operands

The logical_and (), logical_invert (),logical_or(),and logical_xor () methods expect their
arguments to be logical operands. A logical operand is a Decimal instance whose exponent and sign are both zero,
and whose digits are all either O or 1.

9.4.3 Context objects

Contexts are environments for arithmetic operations. They govern precision, set rules for rounding, determine which
signals are treated as exceptions, and limit the range for exponents.

Each thread has its own current context which is accessed or changed using the get context () and setcon-
text () functions:
decimal .getcontext ()

Return the current context for the active thread.

decimal.setcontext (¢)

Set the current context for the active thread to c.

You can also use the with statement and the 1 ocalcontext () function to temporarily change the active context.

decimal.localcontext (ctx=None, **kwargs)

Return a context manager that will set the current context for the active thread to a copy of ctx on entry to the
with-statement and restore the previous context when exiting the with-statement. If no context is specified, a
copy of the current context is used. The kwargs argument is used to set the attributes of the new context.

For example, the following code sets the current decimal precision to 42 places, performs a calculation, and
then automatically restores the previous context:

from decimal import localcontext

with localcontext () as ctx:
ctx.prec = 42 # Perform a high precision calculation
s = calculate_something()
s = +s # Round the final result back to the default precision

Using keyword arguments, the code would be the following:

324 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

from decimal import localcontext

with localcontext (prec=42) as ctx:
s = calculate_something()
s = +s

Raises TypeError if kwargs supplies an attribute that Cont ext doesn’t support. Raises either TypeError
or ValueError if kwargs supplies an invalid value for an attribute.

Changed in version 3.11: localcontext () now supports setting context attributes through the use of
keyword arguments.

New contexts can also be created using the Context constructor described below. In addition, the module provides
three pre-made contexts:
class decimal.BasicContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_UP. All flags are cleared. All traps are enabled (treated as exceptions)
except ITnexact, Rounded, and Subnormal.

Because many of the traps are enabled, this context is useful for debugging.

class decimal .ExtendedContext

This is a standard context defined by the General Decimal Arithmetic Specification. Precision is set to nine.
Rounding is set to ROUND_HALF_EVEN. All flags are cleared. No traps are enabled (so that exceptions are
not raised during computations).

Because the traps are disabled, this context is useful for applications that prefer to have result value of NaN
or Infinity instead of raising exceptions. This allows an application to complete a run in the presence of
conditions that would otherwise halt the program.

class decimal.DefaultContext
This context is used by the Context constructor as a prototype for new contexts. Changing a field (such a
precision) has the effect of changing the default for new contexts created by the Context constructor.

This context is most useful in multi-threaded environments. Changing one of the fields before threads are
started has the effect of setting system-wide defaults. Changing the fields after threads have started is not
recommended as it would require thread synchronization to prevent race conditions.

In single threaded environments, it is preferable to not use this context at all. Instead, simply create contexts
explicitly as described below.

The default values are prec=28, rounding=ROUND_HALF_EVEN, and enabled traps for Overflow,
InvalidOperation,and DivisionByZero.

In addition to the three supplied contexts, new contexts can be created with the Context constructor.

class decimal.Context (prec=None, rounding=None, Emin=None, Emax=None, capitals=None,
clamp=None, flags=None, traps=None)

Creates a new context. If a field is not specified or is None, the default values are copied from the De fault -
Context. If the flags field is not specified or is None, all flags are cleared.

prec is an integer in the range [1, MAX_PREC] that sets the precision for arithmetic operations in the context.
The rounding option is one of the constants listed in the section Rounding Modes.

The traps and flags fields list any signals to be set. Generally, new contexts should only set traps and leave the
flags clear.

The Emin and Emax fields are integers specifying the outer limits allowable for exponents. Emin must be in
the range [MIN_EMIN, 0], Emax in the range [0, MAX_EMAX].

The capitals field is either O or 1 (the default). If set to 1, exponents are printed with a capital E; otherwise, a
lowercase e is used: Decimal ('6.02e+23").

9.4. decimal — Decimal fixed point and floating point arithmetic 325

The Python Library Reference, Release 3.11.0

The clamp field is either O (the default) or 1. If set to 1, the exponent e of a Decimal instance representable
in this context is strictly limited to the range Emin - prec + 1 <= e <= Emax - prec + 1.If
clamp is 0 then a weaker condition holds: the adjusted exponent of the Decimal instance is at most Emax.
When clamp is 1, a large normal number will, where possible, have its exponent reduced and a corresponding
number of zeros added to its coefficient, in order to fit the exponent constraints; this preserves the value of the
number but loses information about significant trailing zeros. For example:

>>> Context (prec=6, Emax=999, clamp=1).create_decimal ('1.23e999")
Decimal ('"1.23000E+999")

A clamp value of 1 allows compatibility with the fixed-width decimal interchange formats specified in IEEE
754.

The Context class defines several general purpose methods as well as a large number of methods for do-
ing arithmetic directly in a given context. In addition, for each of the Decimal methods described above
(with the exception of the adjusted () and as_tuple () methods) there is a corresponding Context
method. For example, for a Context instance C and Decimal instance x, C.exp (x) is equivalent to
x.exp (context=C). Each Context method accepts a Python integer (an instance of int) anywhere
that a Decimal instance is accepted.

clear_flags ()

Resets all of the flags to 0.

clear_traps ()

Resets all of the traps to O.

New in version 3.3.

copy ()
Return a duplicate of the context.

copy_decimal (num)

Return a copy of the Decimal instance num.

create_decimal (num)

Creates a new Decimal instance from num but using self as context. Unlike the Decima 1 constructor,
the context precision, rounding method, flags, and traps are applied to the conversion.

This is useful because constants are often given to a greater precision than is needed by the application.
Another benefit is that rounding immediately eliminates unintended effects from digits beyond the current
precision. In the following example, using unrounded inputs means that adding zero to a sum can change
the result:

>>> getcontext () .prec = 3

>>> Decimal ('3.4445") + Decimal ('1.0023")

Decimal ('4.45"

>>> Decimal ('3.4445') + Decimal (0) + Decimal('1.0023")
Decimal ('4.44")

This method implements the to-number operation of the IBM specification. If the argument is a string,
no leading or trailing whitespace or underscores are permitted.

create_decimal_from_float (f)

Creates a new Decimal instance from a float f but rounding using self as the context. Unlike the
Decimal.from_float () class method, the context precision, rounding method, flags, and traps
are applied to the conversion.

>>> context Context (prec=5, rounding=ROUND_DOWN)
>>> context.create_decimal_from_float (math.pi)
Decimal ('3.1415")

>>> context Context (prec=5, traps=[Inexact])

>>> context.create_decimal_from_float (math.pi)

(continues on next page)

326

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

(continued from previous page)

Traceback (most recent call last):

decimal.Inexact: None

New in version 3.1.
Etiny ()
Returns a value equal to Emin — prec + 1 which is the minimum exponent value for subnormal
results. When underflow occurs, the exponent is set to Et iny.
Etop ()
Returns a value equal to Emax - prec + 1.
The usual approach to working with decimals is to create Decimal instances and then apply arithmetic op-
erations which take place within the current context for the active thread. An alternative approach is to use
context methods for calculating within a specific context. The methods are similar to those for the Decimal
class and are only briefly recounted here.
abs (x)
Returns the absolute value of x.
add (x, y)
Return the sum of x and y.
canonical (x)
Returns the same Decimal object x.
compare (x, y)
Compares x and y numerically.
compare_signal (x, y)
Compares the values of the two operands numerically.
compare_total (x, y)
Compares two operands using their abstract representation.
compare_total_mag (x, y)
Compares two operands using their abstract representation, ignoring sign.
copy_abs (x)
Returns a copy of x with the sign set to 0.
copy_negate (x)
Returns a copy of x with the sign inverted.
copy_sign (x,y)
Copies the sign from y to x.
divide (x, y)
Return x divided by y.
divide_int (x,y)
Return x divided by y, truncated to an integer.
divmod (x, y)
Divides two numbers and returns the integer part of the result.
exp (x)
Returns e ** x.
fma (x, y, 2)
Returns x multiplied by y, plus z.

9.4. decimal — Decimal fixed point and floating point arithmetic 327

The Python Library Reference, Release 3.11.0

is_canonical (x)

Returns True if x is canonical; otherwise returns False.
is_finite (x)

Returns True if x is finite; otherwise returns False.
is_infinite (x)

Returns True if x is infinite; otherwise returns False.
is_nan (x)

Returns True if x is a qNaN or sNaN; otherwise returns False.
is_normal (x)

Returns True if x is a normal number; otherwise returns False.
is_gnan (x)

Returns True if x is a quiet NaN; otherwise returns False.
is_signed (x)

Returns True if x is negative; otherwise returns False.
is_snan (x)

Returns True if x is a signaling NaN; otherwise returns False.
is_subnormal (x)

Returns True if x is subnormal; otherwise returns False.
is_zero (x)

Returns True if x is a zero; otherwise returns False.
1n (x)

Returns the natural (base e) logarithm of x.
logl0 (x)

Returns the base 10 logarithm of x.
logb (x)

Returns the exponent of the magnitude of the operand’s MSD.
logical_and (x, y)

Applies the logical operation and between each operand’s digits.
logical_invert (x)

Invert all the digits in x.
logical_or (x,Yy)

Applies the logical operation or between each operand’s digits.
logical_xor (x,y)

Applies the logical operation xor between each operand’s digits.
max (x, y)

Compares two values numerically and returns the maximum.
max_mag (x, y)

Compares the values numerically with their sign ignored.
min (x, y)

Compares two values numerically and returns the minimum.
min_mag (x, y)

Compares the values numerically with their sign ignored.

328 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

minus (x)

Minus corresponds to the unary prefix minus operator in Python.

multiply (x, y)
Return the product of x and y.

next_minus (x)

Returns the largest representable number smaller than x.

next_plus (x)

Returns the smallest representable number larger than x.

next_toward (x, y)

Returns the number closest to x, in direction towards y.

normalize (x)

Reduces x to its simplest form.

number_class (x)

Returns an indication of the class of x.

plus (x)

Plus corresponds to the unary prefix plus operator in Python. This operation applies the context precision
and rounding, so it is not an identity operation.

power (x, y, modulo=None)

Return x to the power of y, reduced modulo modulo if given.

With two arguments, compute x* *y. If x is negative then y must be integral. The result will be inexact
unless vy is integral and the result is finite and can be expressed exactly in ‘precision’ digits. The rounding
mode of the context is used. Results are always correctly rounded in the Python version.

Decimal (0) ** Decimal (0) resultsin InvalidOperation,andif InvalidOperation
is not trapped, then results in Decimal ('NaN').

Changed in version 3.3: The C module computes power () in terms of the correctly rounded exp ()
and 1n () functions. The result is well-defined but only “almost always correctly rounded”.

With three arguments, compute (x**y) % modulo. For the three argument form, the following
restrictions on the arguments hold:

* all three arguments must be integral

* v must be nonnegative

e at least one of x or y must be nonzero

¢ modulo must be nonzero and have at most ‘precision’ digits

The value resulting from Context .power (x, y, modulo) isequal to the value that would be ob-
tained by computing (x**y) % modulo with unbounded precision, but is computed more efficiently.
The exponent of the result is zero, regardless of the exponents of x, y and modulo. The result is always
exact.

quantize (x, y)
Returns a value equal to x (rounded), having the exponent of y.

radix ()

Just returns 10, as this is Decimal, :)

remainder (x, y)

Returns the remainder from integer division.

The sign of the result, if non-zero, is the same as that of the original dividend.

9.4. decimal — Decimal fixed point and floating point arithmetic 329

The Python Library Reference, Release 3.11.0

remainder_near (x, y)

Returns x — y * n, where n is the integer nearest the exact value of x / vy (if the result is O then its
sign will be the sign of x).

rotate (x, y)

Returns a rotated copy of x, y times.

same_quantum (x, y)

Returns True if the two operands have the same exponent.

scaleb (x, y)
Returns the first operand after adding the second value its exp.

shift (x, y)
Returns a shifted copy of x, y times.

sqgrt (x)
Square root of a non-negative number to context precision.

subtract (x, y)
Return the difference between x and y.

to_eng_string (x)

Convert to a string, using engineering notation if an exponent is needed.

Engineering notation has an exponent which is a multiple of 3. This can leave up to 3 digits to the left of
the decimal place and may require the addition of either one or two trailing zeros.

to_integral_exact (x)

Rounds to an integer.

to_sci_string (x)

Converts a number to a string using scientific notation.

9.4.4 Constants

The constants in this section are only relevant for the C module. They are also included in the pure Python version
for compatibility.

32-bit 64-bit

425000000 999999999999999999
decimal .MAX_PREC

425000000 999999999999999999
decimal .MAX_EMAX

-425000000 -999999999999999999
decimal .MIN_EMIN

-849999999 -1999999999999999997
decimal .MIN_ETINY

decimal . HAVE_THREADS

The value is True. Deprecated, because Python now always has threads.

Deprecated since version 3.9.

330 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

decimal .HAVE_CONTEXTVAR

The default value 1is True. If Python is configured using the
—-—without-decimal-contextvar option, the C version uses a thread-local rather than a
coroutine-local context and the value is False. This is slightly faster in some nested context scenarios.

New in version 3.9: backported to 3.7 and 3.8.

9.4.5 Rounding modes

decimal .ROUND_CEILING
Round towards Infinity.
decimal .ROUND_DOWN
Round towards zero.
decimal .ROUND_FLOOR
Round towards —-Infinity.
decimal .ROUND_HALF_DOWN
Round to nearest with ties going towards zero.

decimal .ROUND_HALF_EVEN
Round to nearest with ties going to nearest even integer.

decimal .ROUND_HALF_UP
Round to nearest with ties going away from zero.

decimal .ROUND_UP

Round away from zero.

decimal .ROUND_O5UP

Round away from zero if last digit after rounding towards zero would have been 0 or 5; otherwise round towards
zero.

9.4.6 Signals

Signals represent conditions that arise during computation. Each corresponds to one context flag and one context trap
enabler.

The context flag is set whenever the condition is encountered. After the computation, flags may be checked for
informational purposes (for instance, to determine whether a computation was exact). After checking the flags, be
sure to clear all flags before starting the next computation.

If the context’s trap enabler is set for the signal, then the condition causes a Python exception to be raised. For
example, if the DivisionByZero trap is set, then a DivisionByZero exception is raised upon encountering
the condition.
class decimal.Clamped
Altered an exponent to fit representation constraints.
Typically, clamping occurs when an exponent falls outside the context’s Emin and Emax limits. If possible,
the exponent is reduced to fit by adding zeros to the coeflicient.
class decimal.DecimalException
Base class for other signals and a subclass of ArithmeticError.

class decimal.DivisionByZero
Signals the division of a non-infinite number by zero.

Can occur with division, modulo division, or when raising a number to a negative power. If this signal is not
trapped, returns Infinity or ~-Infinity with the sign determined by the inputs to the calculation.

9.4. decimal — Decimal fixed point and floating point arithmetic 331

The Python Library Reference, Release 3.11.0

class decimal.Inexact

Indicates that rounding occurred and the result is not exact.

Signals when non-zero digits were discarded during rounding. The rounded result is returned. The signal flag
or trap is used to detect when results are inexact.

class decimal.InvalidOperation

An invalid operation was performed.

Indicates that an operation was requested that does not make sense. If not trapped, returns NaN. Possible
causes include:

Infinity - Infinity
0 * Infinity
Infinity / Infinity
x % 0

Infinity % x

sqgrt (-x) and x > 0
0 ** 0

X ** (non—-integer)
x ** Infinity

class decimal.Overflow
Numerical overflow.
Indicates the exponent is larger than Emax after rounding has occurred. If not trapped, the result depends

on the rounding mode, either pulling inward to the largest representable finite number or rounding outward to
Infinity. In either case, Tnexact and Rounded are also signaled.

class decimal.Rounded

Rounding occurred though possibly no information was lost.

Signaled whenever rounding discards digits; even if those digits are zero (such as rounding 5.00 to 5.0). If
not trapped, returns the result unchanged. This signal is used to detect loss of significant digits.

class decimal.Subnormal

Exponent was lower than Emin prior to rounding.

Occurs when an operation result is subnormal (the exponent is too small). If not trapped, returns the result
unchanged.

class decimal.Underflow

Numerical underflow with result rounded to zero.

Occurs when a subnormal result is pushed to zero by rounding. Tnexact and Subnormal are also signaled.
class decimal.FloatOperation

Enable stricter semantics for mixing floats and Decimals.

If the signal is not trapped (default), mixing floats and Decimals is permitted in the Decimal constructor,
create_decimal () and all comparison operators. Both conversion and comparisons are exact. Any oc-
currence of a mixed operation is silently recorded by setting "1 oat Operat ion in the context flags. Explicit
conversions with from_float () or create_decimal_from float () donot set the flag.

Otherwise (the signal is trapped), only equality comparisons and explicit conversions are silent. All other mixed
operations raise F'loatOperation.

The following table summarizes the hierarchy of signals:

exceptions.ArithmeticError (exceptions.Exception)
DecimalException
Clamped
DivisionByZero (DecimalException, exceptions.ZeroDivisionError)
Inexact

(continues on next page)

332 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

(continued from previous page)

Overflow (Inexact, Rounded)
Underflow (Inexact, Rounded, Subnormal)
InvalidOperation
Rounded
Subnormal
FloatOperation (DecimalException, exceptions.TypeError)

9.4.7 Floating Point Notes
Mitigating round-off error with increased precision
The use of decimal floating point eliminates decimal representation error (making it possible to represent 0. 1 ex-

actly); however, some operations can still incur round-off error when non-zero digits exceed the fixed precision.

The effects of round-off error can be amplified by the addition or subtraction of nearly offsetting quantities resulting in
loss of significance. Knuth provides two instructive examples where rounded floating point arithmetic with insufficient
precision causes the breakdown of the associative and distributive properties of addition:

Examples from Seminumerical Algorithms, Section 4.2.2.
>>> from decimal import Decimal, getcontext
>>> getcontext () .prec = 8

>>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111")
>>> (u + v) + w

Decimal ('9.5111111"

>>> u + (Vv + W)

Decimal ('10")

>>> u, v, w = Decimal (20000), Decimal(-6), Decimal('6.0000003")
>>> (u*v) + (u*w)

Decimal ('0.01")

>>> u * (v+tw)

Decimal ('0.0060000")

The decimal module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss
of significance:

>>> getcontext () .prec = 20

>>> u, v, w = Decimal(11111113), Decimal (-11111111), Decimal('7.51111111")
>>> (u + v) + w

Decimal ('9.51111111")

>>> u + (Vv + W)

Decimal ('9.51111111")

>>>

>>> u, v, w = Decimal (20000), Decimal (-6), Decimal ('6.0000003")
>>> (u*v) + (u*w)

Decimal ('0.0060000")

>>> u * (vtw)

Decimal ('0.0060000")

9.4. decimal — Decimal fixed point and floating point arithmetic 333

The Python Library Reference, Release 3.11.0

Special values

The number system for the decimal module provides special values including NaN, sNaN, —-Infinity, In-
finity, and two zeros, +0 and —0.

Infinities can be constructed directly with: Decimal ('Infinity"'). Also, they can arise from dividing by zero
when the DivisionByZero signal is not trapped. Likewise, when the Overf1ow signal is not trapped, infinity
can result from rounding beyond the limits of the largest representable number.

The infinities are signed (affine) and can be used in arithmetic operations where they get treated as very large, inde-
terminate numbers. For instance, adding a constant to infinity gives another infinite result.

Some operations are indeterminate and return NaN, or if the TnvalidOperation signal is trapped, raise an
exception. For example, 0/0 returns NaN which means “not a number”. This variety of NaN is quiet and, once
created, will flow through other computations always resulting in another NaN. This behavior can be useful for a
series of computations that occasionally have missing inputs — it allows the calculation to proceed while flagging
specific results as invalid.

A variant is sNaN which signals rather than remaining quiet after every operation. This is a useful return value when
an invalid result needs to interrupt a calculation for special handling.

The behavior of Python’s comparison operators can be a little surprising where a NaN is involved. A test for
equality where one of the operands is a quiet or signaling NaN always returns False (even when doing Deci-—
mal ('NaN')==Decimal ('NaN"')), while a test for inequality always returns True. An attempt to compare
two Decimals using any of the <, <=, > or >= operators will raise the TnvalidOperat ion signalif either operand
is a NaN, and return False if this signal is not trapped. Note that the General Decimal Arithmetic specification
does not specify the behavior of direct comparisons; these rules for comparisons involving a NaN were taken from
the IEEE 854 standard (see Table 3 in section 5.7). To ensure strict standards-compliance, use the compare () and
compare—-signal () methods instead.

The signed zeros can result from calculations that underflow. They keep the sign that would have resulted if the
calculation had been carried out to greater precision. Since their magnitude is zero, both positive and negative zeros
are treated as equal and their sign is informational.

In addition to the two signed zeros which are distinct yet equal, there are various representations of zero with differing
precisions yet equivalent in value. This takes a bit of getting used to. For an eye accustomed to normalized floating
point representations, it is not immediately obvious that the following calculation returns a value equal to zero:

>>> 1 / Decimal ('Infinity")
Decimal ('OE-1000026")

9.4.8 Working with threads

The getcontext () function accesses a different Context object for each thread. Having separate thread con-
texts means that threads may make changes (such as getcontext () .prec=10) without interfering with other
threads.

Likewise, the set context () function automatically assigns its target to the current thread.

If setcontext () hasnot been called before get context (), then get context () will automatically create
a new context for use in the current thread.

The new context is copied from a prototype context called DefaultContext. To control the defaults so that each thread
will use the same values throughout the application, directly modify the DefaultContext object. This should be done
before any threads are started so that there won’t be a race condition between threads calling get context (). For
example:

Set applicationwide defaults for all threads about to be launched
DefaultContext.prec = 12

DefaultContext.rounding = ROUND_DOWN

DefaultContext.traps = ExtendedContext.traps.copy ()
DefaultContext.traps[InvalidOperation] = 1

(continues on next page)

334 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

(continued from previous page)

setcontext (DefaultContext)

Afterwards,

tl.start ()
t2.start ()
t3.start ()

the threads can be started

9.4.9 Recipes

Here are a few recipes that serve as utility functions and that demonstrate ways to work with the Decima class:

def moneyfmt (value,

places=2, curr='"', sep=',', dp='.",

pos='"', neg='-"', trailneg="'"):

"""Convert Decimal to a money formatted string.

places: required number of places after the decimal point
curr: optional currency symbol before the sign (may be blank)
sep: optional grouping separator (comma, period, space, or blank)
dp: decimal point indicator (comma or period)

only specify as blank when places 1is zero
pos: optional sign for positive numbers: '+', space or blank
neg: optional sign for negative numbers: '-', '(', space or blank
trailneg:optional trailing minus indicator: '-', ')', space or blank
>>> d = Decimal ('-1234567.8901")
>>> moneyfmt (d, curr='$")
'-$1,234,567.89"
>>> moneyfmt (d, places=0, sep='."', dp='"', neg='', trailneg='-")
'1.234.568-"
>>> moneyfmt (d, curr='S$', neg='(', trailneg="')")

"($1,234,567.89)"'

>>> moneyfmt (Decimal (123456789), sep=' ")

'123 456 789.00'

>>> moneyfmt (Decimal ('-0.02"'), neg='<', trailneg='>")
'<0.02>"

mrn

g = Decimal (10) ** -places # 2 places —--> '0.01"'
sign, digits, exp = value.quantize(q) .as_tuple()
result = []

digits = list (map(str, digits))

build, next = result.append, digits.pop

if sign:

build(trailneq)
for i in range(places):
build(next () if digits else
if places:

build (dp)
if not digits:

build('0")
i=0

while digits:
build (next ())

i +=1

if i == 3 and digits:
i=0
build(sep)

build (curr)

lol)

(continues on next page)

9.4. decimal — Decimal fixed point and floating point arithmetic

335

The Python Library Reference, Release 3.11.0

(continued from previous page)

def

def

def

build(neg if sign else pos)
return ''.join(reversed(result))

piQ):
"""Compute Pi to the current precision.

>>> print (pi())
3.141592653589793238462643383

mn

getcontext () .prec += 2 # extra digits for intermediate steps

three = Decimal (3) # substitute "three=3.0" for regular floats
lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
while s != lasts:

lasts = s

n, na = n+na, nat+8
d, da = d+da, da+32

t = (t *n) / d

s += t
getcontext () .prec —= 2
return +s # unary plus applies the new precision
exp (x) :

""'"Return e raised to the power of x. Result type matches input type.

>>> print (exp (Decimal (1)))
2.718281828459045235360287471
>>> print (exp (Decimal (2)))
7.389056098930650227230427461
>>> print (exp(2.0))
7.38905609893

>>> print (exp (2+07))
(7.38905609893+037)

men

getcontext () .prec += 2
i, lasts, s, fact, num = 0, O, 1, 1, 1

while s != lasts:
lasts = s
i +=1

fact *= i

num *= x

s += num / fact
getcontext () .prec —-= 2
return +s

cos (x) :
"""Return the cosine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

o

For larger values, first compute x = x % (2 * pi).
>>> print (cos (Decimal ('0.5")))
0.8775825618903727161162815826

>>> print (cos (0.5))

0.87758256189

>>> print (cos (0.5+07))
(0.87758256189+07)

mn

getcontext () .prec += 2

(continues on next page)

336

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

(continued from previous page)

i, lasts, s, fact, num, sign =0, 0, 1, 1, 1, 1
while s != lasts:

lasts = s

i 4= 2

fact *= 1 * (i-1)
num *= x * x

sign *= -1
s += num / fact * sign
getcontext () .prec —= 2

return +s

def sin(x):
"""Return the sine of x as measured in radians.

The Taylor series approximation works best for a small value of x.

o3

For larger values, first compute x = x % (2 * pi).
>>> print (sin(Decimal ('0.5")))
0.4794255386042030002732879352

>>> print (sin(0.5))

0.479425538604

>>> print (sin(0.5+07))

(0.479425538604+07)

mn

getcontext () .prec += 2

i, lasts, s, fact, num, sign =1, 0, x, 1, x, 1
while s != lasts:

lasts = s

i += 2

fact *= 1 * (i-1)
num *= x * x

sign *= -1
s += num / fact * sign
getcontext () .prec —= 2

return +s

9.4.10 Decimal FAQ

Q. It is cumbersome to type decimal.Decimal ('1234.5"). Is there a way to minimize typing when using
the interactive interpreter?

A. Some users abbreviate the constructor to just a single letter:

>>> D = decimal.Decimal
>>> D('1.23") + D('3.45")
Decimal ('4.68")

Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others
are not supposed to have excess digits and need to be validated. What methods should be used?

A. The quantize () method rounds to a fixed number of decimal places. If the Tnexact trap is set, it is also
useful for validation:

>>> TWOPLACES = Decimal (10) ** -2 # same as Decimal ('0.01")

>>> # Round to two places
>>> Decimal ('3.214") .quantize (TWOPLACES)
Decimal ('3.21")

9.4. decimal — Decimal fixed point and floating point arithmetic 337

The Python Library Reference, Release 3.11.0

>>> # Validate that a number does not exceed two places
>>> Decimal ('3.21") .quantize (TWOPLACES, context=Context (traps=[Inexact]))
Decimal ('3.21")

>>> Decimal ('3.214") .quantize (TWOPLACES,
Traceback (most recent call last):

context=Context (traps=[Inexact]))

Inexact: None

Q. Once I have valid two place inputs, how do I maintain that invariant throughout an application?

A. Some operations like addition, subtraction, and multiplication by an integer will automatically preserve fixed point.
Others operations, like division and non-integer multiplication, will change the number of decimal places and need
to be followed-up with a quantize () step:

>>> g = Decimal ('102.72") # Initial fixed-point values

>>> b = Decimal ('3.17")

>>> a + b # Addition preserves fixed-point
Decimal ('105.89")

>>> a - b

Decimal ('99.55")

>>> a * 42 # So does integer multiplication
Decimal ('4314.24")

>>> (a * b).quantize (TWOPLACES) # Must quantize non-integer multiplication
Decimal ('325.62")

>>> (b / a).quantize (TWOPLACES) # And quantize division

Decimal ('0.03")

In developing fixed-point applications, it is convenient to define functions to handle the quantize () step:

>>> def mul (x, y, fp=TWOPLACES) :
C return (x * y).quantize (fp)
>>> def div(x, y, fp=TWOPLACES) :
return (x / y).quantize (fp)
>>> mul (a, b) # Automatically preserve fixed-point
Decimal ('325.62")
>>> div (b, a)
Decimal ('0.03")

Q. There are many ways to express the same value. The numbers 200, 200.000, 2E2, and 02E+4 all have the
same value at various precisions. Is there a way to transform them to a single recognizable canonical value?

A. The normalize () method maps all equivalent values to a single representative:

>>> values map (Decimal, '200 200.000 2E2
>>> [v.normalize () for v in values]
[Decimal ('2E+2"'), Decimal ('2E+2"'),

L02E+4" . split ()

Decimal ('2E+2"), Decimal ('2E+2")]

Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation?

A. For some values, exponential notation is the only way to express the number of significant places in the coeffi-
cient. For example, expressing 5. 0E+3 as 5000 keeps the value constant but cannot show the original’s two-place
significance.

If an application does not care about tracking significance, it is easy to remove the exponent and trailing zeroes, losing
significance, but keeping the value unchanged:

>>> def remove_exponent (d) :
return d.quantize (Decimal (1))

if d ==

d.to_integral () else d.normalize()

338 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

>>> remove_exponent (Decimal ('5E+3"))
Decimal ('5000")

Q. Is there a way to convert a regular float to a Decimal?

A. Yes, any binary floating point number can be exactly expressed as a Decimal though an exact conversion may take
more precision than intuition would suggest:

>>> Decimal (math.pi)
Decimal ('3.141592653589793115997963468544185161590576171875")

Q. Within a complex calculation, how can I make sure that I haven’t gotten a spurious result because of insufficient
precision or rounding anomalies.

A. The decimal module makes it easy to test results. A best practice is to re-run calculations using greater precision
and with various rounding modes. Widely differing results indicate insufficient precision, rounding mode issues,
ill-conditioned inputs, or a numerically unstable algorithm.

Q. I noticed that context precision is applied to the results of operations but not to the inputs. Is there anything to
watch out for when mixing values of different precisions?

A. Yes. The principle is that all values are considered to be exact and so is the arithmetic on those values. Only the
results are rounded. The advantage for inputs is that “what you type is what you get”. A disadvantage is that the
results can look odd if you forget that the inputs haven’t been rounded:

>>> getcontext () .prec = 3

>>> Decimal ('3.104"'") + Decimal('2.104")

Decimal ('5.21")

>>> Decimal ('3.104"') + Decimal('0.000") + Decimal('2.104")
Decimal ('5.20")

The solution is either to increase precision or to force rounding of inputs using the unary plus operation:

>>> getcontext () .prec = 3
>>> +Decimal ('1.23456789") # unary plus triggers rounding
Decimal ('1.23")

Alternatively, inputs can be rounded upon creation using the Context.create_decimal () method:

>>> Context (prec=5, rounding=ROUND_DOWN) .create_decimal ('1.2345678")
Decimal ('1.2345")

Q. Is the CPython implementation fast for large numbers?

A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of the decimal module integrate the high
speed libmpdec library for arbitrary precision correctly rounded decimal floating point arithmetic'. 1ibmpdec uses
Karatsuba multiplication for medium-sized numbers and the Number Theoretic Transform for very large numbers.

The context must be adapted for exact arbitrary precision arithmetic. Emin and Emax should always be set to the
maximum values, c 1amp should always be O (the default). Setting prec requires some care.

The easiest approach for trying out bignum arithmetic is to use the maximum value for prec as well*:

>>> setcontext (Context (prec=MAX_PREC, Emax=MAX_EMAX, Emin=MIN_EMIN))

>>> x = Decimal (2) ** 256

>>> x / 128

Decimal (
—'904625697166532776746648320380374280103671755200316906558262375061821325312")

For inexact results, MAX_PREC is far too large on 64-bit platforms and the available memory will be insufficient:

1

New in version 3.3.
2

Changed in version 3.9: This approach now works for all exact results except for non-integer powers.

9.4. decimal — Decimal fixed point and floating point arithmetic 339

https://www.bytereef.org/mpdecimal/doc/libmpdec/index.html
https://en.wikipedia.org/wiki/Karatsuba_algorithm
https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform

The Python Library Reference, Release 3.11.0

>>> Decimal (1) / 3

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

MemoryError

On systems with overallocation (e.g. Linux), a more sophisticated approach is to adjust prec to the amount of
available RAM. Suppose that you have 8GB of RAM and expect 10 simultaneous operands using a maximum of
500MB each:

>>> import sys
>>>
>>> # Maximum number of digits for a single operand using 500MB in 8-byte words
>>> # with 19 digits per word (4-byte and 9 digits for the 32-bit build):
>>> maxdigits = 19 * ((500 * 1024**2) // 8)
>>>
>>> # Check that this works:
>>> ¢ = Context (prec=maxdigits, Emax=MAX_EMAX, Emin=MIN_EMIN)
>>> c.traps[Inexact] = True
>>> setcontext (c)
>>>
>>> # Fill the available precision with nines:
>>> x = Decimal (0) .logical_invert () * 9
>>> sys.getsizeof (x)
524288112
>>> x + 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
decimal.Inexact: [<class 'decimal.Inexact'>]

In general (and especially on systems without overallocation), it is recommended to estimate even tighter bounds and
set the Tnexact trap if all calculations are expected to be exact.

9.5 fractions — Rational numbers

Source code: Lib/fractions.py

The fractions module provides support for rational number arithmetic.
A Fraction instance can be constructed from a pair of integers, from another rational number, or from a string.

class fractions.Fraction (numerator=0, denominator=1)

class fractions.Fraction (other_fraction)

(

(
class fractions.Fraction (float)
class fractions.Fraction (decimal)
(

class fractions.Fraction (string)

The first version requires that numerator and denominator are instances of numbers.Rat ional and returns
anew Fraction instance with value numerator/denominator. If denominatoris 0, it raisesa Zero—
DivisionError. The second version requires that other_fraction is an instance of numbers.Rational
and returns a Fract ion instance with the same value. The next two versions accept either a f1oat or a
decimal.Decimal instance, and return a Fract ion instance with exactly the same value. Note that
due to the usual issues with binary floating-point (see tut-fp-issues), the argument to Fraction (1.1) is
not exactly equal to 11/10, and so Fraction (1.1) does not return Fraction (11, 10) as one might
expect. (But see the documentation for the 1 imit_denominator () method below.) The last version of
the constructor expects a string or unicode instance. The usual form for this instance is:

[sign] numerator ['/' denominator]

340 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.11/Lib/fractions.py

The Python Library Reference, Release 3.11.0

where the optional sign may be either ‘+ or ‘-’ and numerator and denominator (if present) are strings
of decimal digits (underscores may be used to delimit digits as with integral literals in code). In addition, any
string that represents a finite value and is accepted by the £ 1 oat constructor is also accepted by the F’ract ion
constructor. In either form the input string may also have leading and/or trailing whitespace. Here are some
examples:

>>> from fractions import Fraction
>>> Fraction (16, -10)

Fraction (-8, 5)

>>> Fraction(123)

Fraction (123, 1)

>>> Fraction

)
)

(
Fraction (0, 1
>>> Fraction('3/7")
Fraction (3, 7)
>>> Fraction(' -3/7 ")

Fraction (-3, 7)

>>> Fraction('1.414213 \t\n")
Fraction (1414213, 1000000)

>>> Fraction('-.125")

Fraction (-1, 8)

>>> Fraction('7e-6")
Fraction (7, 1000000)

>>> Fraction(2.25)

Fraction (9, 4)

>>> Fraction(1.1)

Fraction (2476979795053773, 2251799813685248)
>>> from decimal import Decimal
>>> Fraction (Decimal ('1.1"))
Fraction (11, 10)

The Fraction class inherits from the abstract base class numbers.Rational, and implements all of
the methods and operations from that class. Fraction instances are hashable, and should be treated as
immutable. In addition, Fract ion has the following properties and methods:

Changed in version 3.2: The Fraction constructor now accepts float and decimal.Decimal in-
stances.

Changed in version 3.9: The math. gcd () function is now used to normalize the numerator and denominator.
math.gcd () alwaysreturna int type. Previously, the GCD type depended on numerator and denominator.

Changed in version 3.11: Underscores are now permitted when creating a Fract ion instance from a string,
following PEP 515 rules.

Changed in version 3.11: Fraction implements __int__ now to satisfy typing. SupportsInt in-
stance checks.

numerator
Numerator of the Fraction in lowest term.

denominator
Denominator of the Fraction in lowest term.
as_integer_ratio()

Return a tuple of two integers, whose ratio is equal to the Fraction and with a positive denominator.
New in version 3.8.

classmethod from_float (fit)

Alternative constructor which only accepts instances of f1oat or numbers. Integral. Beware that
Fraction.from_float (0.3) isnot the same value as Fraction (3, 10).

Note: From Python 3.2 onwards, you can also construct a Fract ion instance directly froma f1oat.

9.5. fractions — Rational numbers 341

https://peps.python.org/pep-0515/

The Python Library Reference, Release 3.11.0

classmethod from_decimal (dec)

Alternative constructor which only accepts instances of decimal.Decimal or numbers.
Integral.

Note: From Python 3.2 onwards, you can also construct a Fraction instance directly from a
decimal.Decimal instance.

limit_denominator (max_denominator=1000000)

Finds and returns the closest Fract ion to self that has denominator at most max_denominator. This
method is useful for finding rational approximations to a given floating-point number:

>>> from fractions import Fraction
>>> Fraction('3.1415926535897932") .1limit_denominator (1000)
Fraction (355, 113)

or for recovering a rational number that’s represented as a float:

>>> from math import pi, cos

>>> Fraction (cos (pi/3))

Fraction (4503599627370497, 9007199254740992)
>>> Fraction(cos(pi/3)) .limit_denominator ()
Fraction (1, 2)

>>> Fraction(l.1).limit_denominator ()
Fraction (11, 10)

__floor__ ()

Returns the greatest int <= self. This method can also be accessed through the math. floor ()
function:

>>> from math import floor
>>> floor (Fraction (355, 113))
3

_ceil__ ()

Returns the least int >= self. This method can also be accessed through the math.ceil () func-
tion.

__round__ ()
__round___ (ndigits)

The first version returns the nearest int to self, rounding half to even. The second version rounds
self tothenearest multiple of Fraction (1, 10**ndigits) (logically,if ndigits isnegative),
again rounding half toward even. This method can also be accessed through the round () function.

See also:

Module numbers The abstract base classes making up the numeric tower.

9.6 random — Generate pseudo-random numbers

Source code: Lib/random.py

This module implements pseudo-random number generators for various distributions.

For integers, there is uniform selection from a range. For sequences, there is uniform selection of a random element, a
function to generate a random permutation of a list in-place, and a function for random sampling without replacement.

342 Chapter 9. Numeric and Mathematical Modules

https://github.com/python/cpython/tree/3.11/Lib/random.py

The Python Library Reference, Release 3.11.0

On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative exponential, gamma,
and beta distributions. For generating distributions of angles, the von Mises distribution is available.

Almost all module functions depend on the basic function random (), which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the Mersenne Twister as the core generator. It produces 53-bit
precision floats and has a period of 2¥¥19937-1. The underlying implementation in C is both fast and threadsafe.
The Mersenne Twister is one of the most extensively tested random number generators in existence. However, being
completely deterministic, it is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions supplied by this module are actually bound methods of a hidden instance of the random. Random
class. You can instantiate your own instances of Random to get generators that don’t share state.

Class Random can also be subclassed if you want to use a different basic generator of your own devising: in that case,
override the random (), seed (), getstate (), and setstate () methods. Optionally, a new generator can
supply a getrandbits () method — this allows randrange () to produce selections over an arbitrarily large
range.

The random module also provides the Sy stemRandom class which uses the system function os. urandom ()
to generate random numbers from sources provided by the operating system.

Warning: The pseudo-random generators of this module should not be used for security purposes. For security
or cryptographic uses, see the secret s module.

See also:

M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-dimensionally equidistributed uniform pseudorandom
number generator”, ACM Transactions on Modeling and Computer Simulation Vol. 8, No. 1, January pp.3-30 1998.

Complementary-Multiply-with-Carry recipe for a compatible alternative random number generator with a long period
and comparatively simple update operations.

9.6.1 Bookkeeping functions

random. seed (a=None, version=2)

Initialize the random number generator.

If a is omitted or None, the current system time is used. If randomness sources are provided by the operating
system, they are used instead of the system time (see the os . urandom () function for details on availability).

If a is an int, it is used directly.

With version 2 (the default), a st r, bytes, or bytearray object gets converted to an int and all of its
bits are used.

With version 1 (provided for reproducing random sequences from older versions of Python), the algorithm for
strand bytes generates a narrower range of seeds.

Changed in version 3.2: Moved to the version 2 scheme which uses all of the bits in a string seed.

Changed in version 3.11: The seed must be one of the following types: NoneType, int, f1loat, str,bytes,
or bytearray.

random.getstate ()
Return an object capturing the current internal state of the generator. This object can be passed to set -
state () torestore the state.

random.setstate (state)

state should have been obtained from a previous call to get state (),and set state () restores the internal
state of the generator to what it was at the time getstate () was called.

9.6. random — Generate pseudo-random humbers 343

https://code.activestate.com/recipes/576707/

The Python Library Reference, Release 3.11.0

9.6.2 Functions for bytes

random.randbytes (n)

Generate n random bytes.
This method should not be used for generating security tokens. Use secrets. token_bytes () instead.

New in version 3.9.

9.6.3 Functions for integers

random. randrange (sfop)

random. randrange (start, stop[, step])

Return a randomly selected element from range (start, stop, step). This is equivalent to
choice (range (start, stop, step)), butdoesn’t actually build a range object.

The positional argument pattern matches that of range (). Keyword arguments should not be used because
the function may use them in unexpected ways.

Changed in version 3.2: randrange () is more sophisticated about producing equally distributed values.
Formerly it used a style like int (random () *n) which could produce slightly uneven distributions.

Deprecated since version 3.10: The automatic conversion of non-integer types to equivalent integers is depre-
cated. Currently randrange (10.0) is losslessly converted to randrange (10) . In the future, this will
raise a TypeError.

Deprecated since version 3.10: The exception raised for non-integral values such as randrange (10.5) or
randrange ('10"') will be changed from ValueErrorto TypeError.

random.randint (a, b)

Return a random integer N such that a <= N <= b. Alias for randrange (a, b+1).

random.getrandbits (k)

Returns a non-negative Python integer with k£ random bits. This method is supplied with the MersenneTwister
generator and some other generators may also provide it as an optional part of the API. When available, ge -
trandbits () enables randrange () to handle arbitrarily large ranges.

Changed in version 3.9: This method now accepts zero for k.

9.6.4 Functions for sequences

random.choice (seq)

Return a random element from the non-empty sequence seq. If seq is empty, raises TndexError.

random. choices (population, weights=None, *, cum_weights=None, k=1)

Return a k sized list of elements chosen from the population with replacement. If the population is empty,
raises TndexError.

If a weights sequence is specified, selections are made according to the relative weights. Alternatively, if a
cum_weights sequence is given, the selections are made according to the cumulative weights (perhaps computed
using itertools.accumulate ()). For example, the relative weights [10, 5, 30, 5] areequivalent
to the cumulative weights [10, 15, 45, 50]. Internally, the relative weights are converted to cumulative
weights before making selections, so supplying the cumulative weights saves work.

If neither weights nor cum_weights are specified, selections are made with equal probability. If a weights
sequence is supplied, it must be the same length as the population sequence. It is a TypeError to specify
both weights and cum_weights.

The weights or cum_weights can use any numeric type that interoperates with the £7oat values returned by
random () (that includes integers, floats, and fractions but excludes decimals). Weights are assumed to be
non-negative and finite. A ValueError is raised if all weights are zero.

344

Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

For a given seed, the choices () function with equal weighting typically produces a different sequence
than repeated calls to choice (). The algorithm used by choices () uses floating point arithmetic for
internal consistency and speed. The algorithm used by choice () defaults to integer arithmetic with repeated
selections to avoid small biases from round-off error.

New in version 3.6.
Changed in version 3.9: Raises a ValueError if all weights are zero.

random.shuffle (x)

Shuffle the sequence x in place.
To shuffle an immutable sequence and return a new shuffled list, use sample (x, k=len (x)) instead.

Note that even for small 1en (x), the total number of permutations of x can quickly grow larger than the
period of most random number generators. This implies that most permutations of a long sequence can never
be generated. For example, a sequence of length 2080 is the largest that can fit within the period of the
Mersenne Twister random number generator.

Deprecated since version 3.9, removed in version 3.11: The optional parameter random.

random. sample (population, k, *, counts=None)
Return a k length list of unique elements chosen from the population sequence. Used for random sampling
without replacement.

Returns a new list containing elements from the population while leaving the original population unchanged.
The resulting list is in selection order so that all sub-slices will also be valid random samples. This allows raffle
winners (the sample) to be partitioned into grand prize and second place winners (the subslices).

Members of the population need not be hashable or unique. If the population contains repeats, then each
occurrence is a possible selection in the sample.

Repeated elements can be specified one at a time or with the optional keyword-only counts parameter. For ex-
ample, sample (['red', 'blue'], counts=[4, 2], k=5) isequivalentto sample (['red’,
'red', 'red', 'red', 'blue', 'blue'], k=5).

To choose a sample from a range of integers, use a range () object as an argument. This is especially fast
and space efficient for sampling from a large population: sample (range (10000000), k=60).

If the sample size is larger than the population size, a ValueError is raised.
Changed in version 3.9: Added the counts parameter.

Changed in version 3.11: The population must be a sequence. Automatic conversion of sets to lists is no longer
supported.

9.6.5 Real-valued distributions

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random.random ()

Return the next random floating point number in the range [0.0, 1.0).

random.uniform (a, b)

Return a random floating point number N suchthata <= N <= bfora <= bandb <= N <= aforb
< a.

The end-point value b may or may not be included in the range depending on floating-point rounding in the
equationa + (b-a) * random().

9.6. random — Generate pseudo-random humbers 345

The Python Library Reference, Release 3.11.0

random.triangular (low, high, mode)
Return a random floating point number N such that low <= N <= high and with the specified mode
between those bounds. The low and high bounds default to zero and one. The mode argument defaults to the
midpoint between the bounds, giving a symmetric distribution.

random.betavariate (alpha, beta)
Beta distribution. Conditions on the parameters are alpha > 0 and beta > 0. Returned values range
between 0 and 1.

random.expovariate (lambd)

Exponential distribution. lambd is 1.0 divided by the desired mean. It should be nonzero. (The parameter
would be called “lambda”, but that is a reserved word in Python.) Returned values range from O to positive
infinity if lambd is positive, and from negative infinity to O if lambd is negative.

random.gammavariate (alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters are alpha > 0 and beta
> 0.

The probability distribution function is:

math.gamma (alpha) * beta ** alpha

random.gauss (mu=0.0, sigma=1.0)
Normal distribution, also called the Gaussian distribution. mu is the mean, and sigma is the standard deviation.
This is slightly faster than the normalvariate () function defined below.

Multithreading note: When two threads call this function simultaneously, it is possible that they will receive the
same return value. This can be avoided in three ways. 1) Have each thread use a different instance of the random
number generator. 2) Put locks around all calls. 3) Use the slower, but thread-safe normalvariate ()
function instead.

Changed in version 3.11: mu and sigma now have default arguments.

random.lognormvariate (mu, sigma)
Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with mean mu and standard deviation sigma. mu can have any value, and sigrma must be greater than zero.
random.normalvariate (mu=0.0, sigma=1.0)

Normal distribution. mu is the mean, and sigma is the standard deviation.
Changed in version 3.11: mu and sigma now have default arguments.

random.vonmisesvariate (mu, kappa)
mu is the mean angle, expressed in radians between 0 and 2*pi, and kappa is the concentration parameter,
which must be greater than or equal to zero. If kappa is equal to zero, this distribution reduces to a uniform
random angle over the range 0 to 2*pi.

random.paretovariate (alpha)

Pareto distribution. alpha is the shape parameter.

random.weibullvariate (alpha, beta)

Weibull distribution. alpha is the scale parameter and beta is the shape parameter.

346 Chapter 9. Numeric and Mathematical Modules

The Python Library Reference, Release 3.11.0

9.6.6 Alternative Generator

class random.Random ([seed])

Class that implements the default pseudo-random number generator used by the random module.

Deprecated since version 3.9: In the future, the seed must be one of the following types: NoneType, int,
float, str, bytes,or bytearray.

class random.SystemRandom ([seed])

Class that uses the os. urandom () function for generating random numbers from sources provided by the
operating system. Not available on all systems. Does not rely on software state, and sequences are not re-
producible. Accordingly, the seed () method has no effect and is ignored. The getstate () and set—
state () methods raise Not ImplementedError if called.

9.6.7 Notes on Reproducibility
Sometimes it is useful to be able to reproduce the sequences given by a pseudo-random number generator. By re-using
a seed value, the same sequence should be reproducible from run to run as long as multiple threads are not running.

Most of the random module’s algorithms and seeding functions are subject to change across Python versions, but two
aspects are guaranteed not to change:

* If a new seeding method is added, then a backward compatible seeder will be offered.

* The generator’s random () method will continue to produce the same sequence when the compatible seeder
is given the same seed.

9.6.8 Examples

Basic examples:

>>> random () # Random float: 0.0 <= x < 1.0
0.37444887175646646

>>> uniform (2.5, 10.0) # Random float: 2.5 <= x <= 10.0
3.1800146073117523

>>> expovariate(l / 5) # Interval between arrivals averaging 5.
—seconds
5.148957571865031

>>> randrange (10) # Integer from 0 to 9 inclusive

7

>>> randrange (0, 101, 2) # Even integer from 0 to 100 inclusive
26

>>> choice(['win', 'lose', 'draw']) # Single random element from a sequence
'draw'

>>> deck = 'ace two three four'.split()

>>> shuffle (deck) # Shuffle a list

>>> deck
['four', 'two', 'ace', 'three']

>>> sample([10, 20, 30, 40, 50], k=4) # Four samples without replacement
[40, 10, 50, 30]

Simulations:

9.6. random — Generate pseudo-random humbers 347

The Python Library Reference, Release 3.11.0

>>> # Six roulette wheel spins (weighted sampling with replacement)
>>> choices(['red', 'black', 'green'], [18, 18, 2], k=6)
['red', 'green', 'black', 'black', 'red', 'black']

>>> # Deal 20 cards without replacement from a deck
>>> # of 52 playing cards, and determine the proportion of cards

>>> # with a ten-value: ten, jack, queen, or king.

>>> dealt = sample(['tens', 'low cards'], counts=[16, 36], k=20)
>>> dealt.count ('tens') / 20

0.15

>>> # Estimate the probability of getting 5 or more heads from 7 spins
>>> # of a biased coin that settles on heads 60% of the time.
>>> def trial():
return choices ('HT', cum_weights=(0.60, 1.00), k=7).count('H') >= 5

>>> sum(trial () for i in range (10_000)) / 10_000
0.4169

>>> # Probability of the median of 5 samples being in middle two quartiles
>>> def trial():
return 2_500 <= sorted(choices(range(10_000), k=5))[2] < 7_500

>>> sum(trial() for i in range(10_000)) / 10_000
0.7958

Example of statistical bootstrapping using resampling with replacement to estimate a confidence interval for the mean
of a sample:

https://www.thoughtco.com/example-of-bootstrapping-3126155
from statistics import fmean as mean
from random import choices

data = [41, 50, 29, 37, 81, 30, 73, 63, 20, 35, 68, 22, 60, 31, 95]

means = sorted(mean (choices(data, k=len(data))) for i in range (100))

print (f'The sample mean of {mean(data) :.1f} has a 90% confidence '
f'interval from {means[5]:.1f} to {means[94]:.1f}")

Example of a resampling permutation test to determine the statistical significance or p-value of an observed difference
between the effects of a drug versus a placebo:

Example from "Statistics is Easy" by Dennis Shasha and Manda Wilson
from statistics import fmean as mean
from random import shuffle

drug = [54, 73, 53, 70, 73, 68, 52, 65, 65]
placebo = [54, 51, 58, 44, 55, 52, 42, 47, 58, 46]
observed_diff = mean(drug) - mean (placebo)

n = 10_000

count = 0

combined = drug + placebo

for i in range(n):
shuffle (combined)
new_diff = mean(combined[:len(drug)]) - mean(combined[len (drug):])
count += (new_diff >= observed_diff)

print (f'{n} label reshufflings produced only {count} instances with a difference')
print (f'at least as extreme as the observed difference of {observed_diff:.1f}.")
print (f'The one-sided p-value of {count / n:.4f} leads us to reject the null')

(

print (f'hypothesis that there is no difference between the drug and the placebo.')

348 Chapter 9. Numeric and Mathematical Modules

https://en.wikipedia.org/wiki/Bootstrapping_(statistics)
https://en.wikipedia.org/wiki/Resampling_(statistics)#Permutation_tests
https://en.wikipedia.org/wiki/P-value

The Python Library Reference, Release 3.11.0

Simulation of arrival times and service deliveries for a multiserver queue:

from heapg import heapify, heapreplace
from random import expovariate, gauss
from statistics import mean, quantiles

average_arrival_interval = 5.6

average_service_time = 15.0

stdev_service_time = 3.5

num_servers = 3

waits = []

arrival_time = 0.0

servers = [0.0] * num_servers # time when each server becomes available

heapify (servers)
for i in range (1_000_000):
arrival_time += expovariate (1.0 / average_arrival_interval)
next_server_available = servers[0]
wait = max (0.0, next_server_available - arrival_time)
waits.append (wait)
service_duration = max (0.0, gauss (average_service_time, stdev_service_time))
service_completed = arrival_time + wait + service_duration
heapreplace (servers, service_completed)

print (f'Mean wait: {mean(waits):.1f Max walt: {max(waits) :.1f}")
print ('Quartiles:', [round(q, 1) for g in quantiles(waits)])

See also:

Statistics for Hackers a video tutorial by Jake Vanderplas on statistical analysis using just a few fundamental concepts
including simulation, sampling, shuffling, and cross-validation.

Economics Simulation a simulation of a marketplace by Peter Norvig that shows effective use of many of the tools
and distributions provided by this module (gauss, uniform, sample, betavariate, choice, triangular, and randrange).

A Concrete Introduction to Probability (using Python) a tutorial by Peter Norvig covering the basics of probability
theory, how to write simulations, and how to perform data analysis using Python.

9.6.9 Recipes

The default random () returns multiples of 27 in the range 0.0 < x < 1.0. All such numbers are evenly spaced and
are exactly representable as Python floats. However, many other representable floats in that interval are not possible
selections. For example, 0.059548614080256079 isn’t an integer multiple of 27,

The following recipe takes a different approach. All floats in the interval are possible selections. The mantissa comes
from a uniform distribution of integers in the range 2°? < mantissa < 2% The exponent comes from a geometric
distribution where exponents smaller than -53 occur half as often as the next larger exponent.

from random import Random
from math import ldexp

class FullRandom (Random) :

def random(self):
mantissa = 0x10_0000_0000_0000 | self.getrandbits(52)
exponent = -53
x = 0
while not x:
x = self.getrandbits (32)
exponent += x.bit_length() - 32
return ldexp (mantissa, exponent)

All real valued distributions in the class will use the new method:

9.6. random — Generate pseudo-random humbers 349

https://www.youtube.com/watch?v=Iq9DzN6mvYA
https://us.pycon.org/2016/speaker/profile/295/
http://nbviewer.jupyter.org/url/norvig.com/ipython/Economics.ipynb
https://norvig.com/bio.html
https://nbviewer.jupyter.org/url/norvig.com/ipython/Probability.ipynb
https://norvig.com/bio.html

The Python Library Reference, Release 3.11.0

>>> fr = FullRandom ()
>>> fr.random/()
0.05954861408025609

>>> fr.expovariate (0.25)
8.87925541791544

The recipe is conceptually equivalent to an algorithm that chooses from all the multiples of 27197 in the range 0.0 <

x < 1.0. All such numbers are evenly spaced, but most have to be rounded down to the nearest representable Python
float. (The value 27197 is the smallest positive unnormalized float and is equal to math.ulp (0.0).)

See also:

Generating Pseudo-random Floating-Point Values a paper by Allen B. Downey describing ways to generate more
fine-grained floats than normally generated by random ().

9.7 statistics — Mathematical statistics functions

New in version 3.4.

Source code: Lib/statistics.py

This module provides functions for calculating mathematical statistics of numeric (Rea 1-valued) data.

The module is not intended to be a competitor to third-party libraries such as NumPy, SciPy, or proprietary full-
featured statistics packages aimed at professional statisticians such as Minitab, SAS and Matlab. It is aimed at the
level of graphing and scientific calculators.

Unless explicitly noted, these functions support int, float, Decimal and Fraction. Behaviour with other
types (whether in the numeric tower or not) is currently unsupported. Collections with a mix of types are also
undefined and implementation-dependent. If your input data consists of mixed types, you may be able to use map ()
to ensure a consistent result, for example: map (float, input_data).

Some datasets use NaN (not a number) values to represent missing data. Since NaNs have unusual comparison
semantics, they cause surprising or undefined behaviors in the statistics functions that sort data or that count occur-
rences. The functions affected are median (), median_low (), median_high (), median_grouped(),
mode (), multimode (),and quantiles (). The NaN values should be stripped before calling these functions:

>>> from statistics import median
>>> from math import isnan
>>> from itertools import filterfalse

>>> data = [20.7, float('NaN'),19.2, 18.3, float('NaN'), 14.4]
>>> sorted(data) # This has surprising behavior

[20.7, nan, 14.4, 18.3, 19.2, nan]

>>> median (data) # This result 1is unexpected

16.35

>>> sum(map (isnan, data)) # Number of missing values

2

>>> clean = list (filterfalse(isnan, data)) # Strip NalN values

>>> clean
[20.7, 19.2, 18.3, 14.4]

>>> sorted(clean) # Sorting now works as expected

[14.4, 18.3, 19.2, 20.7]

>>> median (clean) # This result is now well defined
18.75

350 Chapter 9. Numeric and Mathematical Modules

https://allendowney.com/research/rand/downey07randfloat.pdf
https://github.com/python/cpython/tree/3.11/Lib/statistics.py
https://numpy.org
https://www.scipy.org/

The Python Library Reference, Release 3.11.0

9.7.1 Averages and measures of central location

These functions calculate an average or typical value from a population or sample.

mean () Arithmetic mean (“average”) of data.

fmean () Fast, floating point arithmetic mean, with optional weighting.
geometric_mean () | Geometric mean of data.

harmonic_mean () Harmonic mean of data.

median () Median (middle value) of data.

median_low () Low median of data.

median_high () High median of data.

median_grouped () | Median, or 50th percentile, of grouped data.

mode () Single mode (most common value) of discrete or nominal data.
multimode () List of modes (most common values) of discrete or nominal data.
quantiles () Divide data into intervals with equal probability.

9.7.2 Measures of spread

These functions calculate a measure of how much the population or sample tends to deviate from the typical or average
values.

pstdev () Population standard deviation of data.
pvariance () | Population variance of data.

stdev () Sample standard deviation of data.
variance () Sample variance of data.

9.7.3 Statistics for relations between two inputs

These functions calculate statistics regarding relations between two inputs.

covariance () Sample covariance for two variables.
correlation () Pearson’s correlation coefficient for two variables.
linear regression () | Slope and intercept for simple linear regression.

9.7.4 Function details
Note: The functions do not require the data given to them to be sorted. However, for reading convenience, most of
the examples show sorted sequences.

statistics.mean (data)

Return the sample arithmetic mean of data which can be a sequence or iterable.

The arithmetic mean is the sum of the data divided by the number of data points. It is commonly called “the
average”, although it is only one of many different mathematical averages. It is a measure of the central location
of the data.

If data is empty, StatisticsError will be raised.

Some examples of use:

>>> mean([1, 2, 3, 4, 41)

2.8

>>> mean([-1.0, 2.5, 3.25, 5.75])
2.625

(continues on next page)

9.7. statistics — Mathematical statistics functions 351

The Python Library Reference, Release 3.11.0

(continued from previous page)

>>> from fractions import Fraction as F
>>> mean ([F (3, 7), F(1, 21), F(5, 3), F(1, 3)])
Fraction (13, 21)

>>> from decimal import Decimal as D
>>> mean ([D("0.5"), D("0.75"), D("0.625"), D("0.375")1])
Decimal ('0.5625")

Note: The mean is strongly affected by outliers and is not necessarily a typical example of the data points.
For a more robust, although less efficient, measure of central tendency, see median ().

The sample mean gives an unbiased estimate of the true population mean, so that when taken on average over all
the possible samples, mean (sample) converges on the true mean of the entire population. If data represents
the entire population rather